langchain_experimental.data_anonymizer.presidio
.PresidioReversibleAnonymizer¶
- class langchain_experimental.data_anonymizer.presidio.PresidioReversibleAnonymizer(analyzed_fields: Optional[List[str]] = None, operators: Optional[Dict[str, OperatorConfig]] = None, languages_config: Dict = {'models': [{'lang_code': 'en', 'model_name': 'en_core_web_lg'}], 'nlp_engine_name': 'spacy'}, add_default_faker_operators: bool = True, faker_seed: Optional[int] = None)[source]¶
- Parameters
analyzed_fields – List of fields to detect and then anonymize. Defaults to all entities supported by Microsoft Presidio.
operators – Operators to use for anonymization. Operators allow for custom anonymization of detected PII. Learn more: https://microsoft.github.io/presidio/tutorial/10_simple_anonymization/
languages_config – Configuration for the NLP engine. First language in the list will be used as the main language in self.anonymize(…) when no language is specified. Learn more: https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/
faker_seed – Seed used to initialize faker. Defaults to None, in which case faker will be seeded randomly and provide random values.
Attributes
anonymizer_mapping
Return the anonymizer mapping This is just the reverse version of the deanonymizer mapping.
deanonymizer_mapping
Return the deanonymizer mapping
Methods
__init__
([analyzed_fields, operators, ...])- param analyzed_fields
List of fields to detect and then anonymize.
add_operators
(operators)Add operators to the anonymizer
add_recognizer
(recognizer)Add a recognizer to the analyzer
anonymize
(text[, language, allow_list])Anonymize text
deanonymize
(text_to_deanonymize[, ...])Deanonymize text
load_deanonymizer_mapping
(file_path)Load the deanonymizer mapping from a JSON or YAML file.
Reset the deanonymizer mapping
save_deanonymizer_mapping
(file_path)Save the deanonymizer mapping to a JSON or YAML file.
- __init__(analyzed_fields: Optional[List[str]] = None, operators: Optional[Dict[str, OperatorConfig]] = None, languages_config: Dict = {'models': [{'lang_code': 'en', 'model_name': 'en_core_web_lg'}], 'nlp_engine_name': 'spacy'}, add_default_faker_operators: bool = True, faker_seed: Optional[int] = None)[source]¶
- Parameters
analyzed_fields – List of fields to detect and then anonymize. Defaults to all entities supported by Microsoft Presidio.
operators – Operators to use for anonymization. Operators allow for custom anonymization of detected PII. Learn more: https://microsoft.github.io/presidio/tutorial/10_simple_anonymization/
languages_config – Configuration for the NLP engine. First language in the list will be used as the main language in self.anonymize(…) when no language is specified. Learn more: https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/
faker_seed – Seed used to initialize faker. Defaults to None, in which case faker will be seeded randomly and provide random values.
- add_operators(operators: Dict[str, OperatorConfig]) None ¶
Add operators to the anonymizer
- Parameters
operators – Operators to add to the anonymizer.
- add_recognizer(recognizer: EntityRecognizer) None ¶
Add a recognizer to the analyzer
- Parameters
recognizer – Recognizer to add to the analyzer.
- anonymize(text: str, language: Optional[str] = None, allow_list: Optional[List[str]] = None) str ¶
Anonymize text
- deanonymize(text_to_deanonymize: str, deanonymizer_matching_strategy: ~typing.Callable[[str, ~typing.Dict[str, ~typing.Dict[str, str]]], str] = <function exact_matching_strategy>) str ¶
Deanonymize text