Source code for langchain_experimental.tot.prompts
import json
from textwrap import dedent
from typing import List
from langchain.prompts import PromptTemplate
from langchain.schema import BaseOutputParser
from langchain_experimental.tot.thought import ThoughtValidity
[docs]def get_cot_prompt() -> PromptTemplate:
return PromptTemplate(
template_format="jinja2",
input_variables=["problem_description", "thoughts"],
template=dedent(
"""
You are an intelligent agent that is generating one thought at a time in
a tree of thoughts setting.
PROBLEM
{{problem_description}}
{% if thoughts %}
THOUGHTS
{% for thought in thoughts %}
{{ thought }}
{% endfor %}
{% endif %}
Let's think step by step.
"""
).strip(),
)
[docs]class JSONListOutputParser(BaseOutputParser):
"""Class to parse the output of a PROPOSE_PROMPT response."""
@property
def _type(self) -> str:
return "json_list"
[docs] def parse(self, text: str) -> List[str]:
"""Parse the output of an LLM call."""
json_string = text.split("```json")[1].strip().strip("```").strip()
try:
return json.loads(json_string)
except json.JSONDecodeError:
return []
[docs]def get_propose_prompt() -> PromptTemplate:
return PromptTemplate(
template_format="jinja2",
input_variables=["problem_description", "thoughts", "n"],
output_parser=JSONListOutputParser(),
template=dedent(
"""
You are an intelligent agent that is generating thoughts in a tree of
thoughts setting.
The output should be a markdown code snippet formatted as a JSON list of
strings, including the leading and trailing "```json" and "```":
```json
[
"<thought-1>",
"<thought-2>",
"<thought-3>"
]
```
PROBLEM
{{ problem_description }}
{% if thoughts %}
VALID THOUGHTS
{% for thought in thoughts %}
{{ thought }}
{% endfor %}
Possible next {{ n }} valid thoughts based on the last valid thought:
{% else %}
Possible next {{ n }} valid thoughts based on the PROBLEM:
{%- endif -%}
"""
).strip(),
)
[docs]class CheckerOutputParser(BaseOutputParser):
[docs] def parse(self, text: str) -> ThoughtValidity:
"""Parse the output of the language model."""
text = text.upper()
if "INVALID" in text:
return ThoughtValidity.INVALID
elif "INTERMEDIATE" in text:
return ThoughtValidity.VALID_INTERMEDIATE
elif "VALID" in text:
return ThoughtValidity.VALID_FINAL
else:
return ThoughtValidity.INVALID
@property
def _type(self) -> str:
return "tot_llm_checker_output"
CHECKER_PROMPT = PromptTemplate(
input_variables=["problem_description", "thoughts"],
template=dedent(
"""
You are an intelligent agent, validating thoughts of another intelligent agent.
PROBLEM
{problem_description}
THOUGHTS
{thoughts}
Evaluate the thoughts and respond with one word.
- Respond VALID if the last thought is a valid final solution to the
problem.
- Respond INVALID if the last thought is invalid.
- Respond INTERMEDIATE if the last thought is valid but not the final
solution to the problem.
This chain of thoughts is"""
).strip(),
output_parser=CheckerOutputParser(),
)