Source code for langchain_experimental.llm_bash.prompt
# flake8: noqa
from __future__ import annotations
import re
from typing import List
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import BaseOutputParser, OutputParserException
_PROMPT_TEMPLATE = """If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:
Question: "copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'"
I need to take the following actions:
- List all files in the directory
- Create a new directory
- Copy the files from the first directory into the second directory
```bash
ls
mkdir myNewDirectory
cp -r target/* myNewDirectory
```
That is the format. Begin!
Question: {question}"""
[docs]class BashOutputParser(BaseOutputParser):
"""Parser for bash output."""
[docs] def parse(self, text: str) -> List[str]:
if "```bash" in text:
return self.get_code_blocks(text)
else:
raise OutputParserException(
f"Failed to parse bash output. Got: {text}",
)
[docs] @staticmethod
def get_code_blocks(t: str) -> List[str]:
"""Get multiple code blocks from the LLM result."""
code_blocks: List[str] = []
# Bash markdown code blocks
pattern = re.compile(r"```bash(.*?)(?:\n\s*)```", re.DOTALL)
for match in pattern.finditer(t):
matched = match.group(1).strip()
if matched:
code_blocks.extend(
[line for line in matched.split("\n") if line.strip()]
)
return code_blocks
@property
def _type(self) -> str:
return "bash"
PROMPT = PromptTemplate(
input_variables=["question"],
template=_PROMPT_TEMPLATE,
output_parser=BashOutputParser(),
)