Source code for langchain_experimental.graph_transformers.diffbot

from typing import Any, Dict, List, Optional, Sequence, Tuple, Union

import requests
from langchain.graphs.graph_document import GraphDocument, Node, Relationship
from langchain.schema import Document
from langchain.utils import get_from_env


[docs]def format_property_key(s: str) -> str: words = s.split() if not words: return s first_word = words[0].lower() capitalized_words = [word.capitalize() for word in words[1:]] return "".join([first_word] + capitalized_words)
[docs]class NodesList: """ Manages a list of nodes with associated properties. Attributes: nodes (Dict[Tuple, Any]): Stores nodes as keys and their properties as values. Each key is a tuple where the first element is the node ID and the second is the node type. """
[docs] def __init__(self) -> None: self.nodes: Dict[Tuple[Union[str, int], str], Any] = dict()
[docs] def add_node_property( self, node: Tuple[Union[str, int], str], properties: Dict[str, Any] ) -> None: """ Adds or updates node properties. If the node does not exist in the list, it's added along with its properties. If the node already exists, its properties are updated with the new values. Args: node (Tuple): A tuple containing the node ID and node type. properties (Dict): A dictionary of properties to add or update for the node. """ if node not in self.nodes: self.nodes[node] = properties else: self.nodes[node].update(properties)
[docs] def return_node_list(self) -> List[Node]: """ Returns the nodes as a list of Node objects. Each Node object will have its ID, type, and properties populated. Returns: List[Node]: A list of Node objects. """ nodes = [ Node(id=key[0], type=key[1], properties=self.nodes[key]) for key in self.nodes ] return nodes
# Properties that should be treated as node properties instead of relationships FACT_TO_PROPERTY_TYPE = [ "Date", "Number", "Job title", "Cause of death", "Organization type", "Academic title", ] schema_mapping = [ ("HEADQUARTERS", "ORGANIZATION_LOCATIONS"), ("RESIDENCE", "PERSON_LOCATION"), ("ALL_PERSON_LOCATIONS", "PERSON_LOCATION"), ("CHILD", "HAS_CHILD"), ("PARENT", "HAS_PARENT"), ("CUSTOMERS", "HAS_CUSTOMER"), ("SKILLED_AT", "INTERESTED_IN"), ]
[docs]class SimplifiedSchema: """ Provides functionality for working with a simplified schema mapping. Attributes: schema (Dict): A dictionary containing the mapping to simplified schema types. """
[docs] def __init__(self) -> None: """Initializes the schema dictionary based on the predefined list.""" self.schema = dict() for row in schema_mapping: self.schema[row[0]] = row[1]
[docs] def get_type(self, type: str) -> str: """ Retrieves the simplified schema type for a given original type. Args: type (str): The original schema type to find the simplified type for. Returns: str: The simplified schema type if it exists; otherwise, returns the original type. """ try: return self.schema[type] except KeyError: return type
[docs]class DiffbotGraphTransformer: """Transforms documents into graph documents using Diffbot's NLP API. A graph document transformation system takes a sequence of Documents and returns a sequence of Graph Documents. Example: .. code-block:: python class DiffbotGraphTransformer(BaseGraphDocumentTransformer): def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[GraphDocument]: results = [] for document in documents: raw_results = self.nlp_request(document.page_content) graph_document = self.process_response(raw_results, document) results.append(graph_document) return results async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError """
[docs] def __init__( self, diffbot_api_key: Optional[str] = None, fact_confidence_threshold: float = 0.7, include_qualifiers: bool = True, include_evidence: bool = True, simplified_schema: bool = True, ) -> None: """ Initialize the graph transformer with various options. Args: diffbot_api_key (str): The API key for Diffbot's NLP services. fact_confidence_threshold (float): Minimum confidence level for facts to be included. include_qualifiers (bool): Whether to include qualifiers in the relationships. include_evidence (bool): Whether to include evidence for the relationships. simplified_schema (bool): Whether to use a simplified schema for relationships. """ self.diffbot_api_key = diffbot_api_key or get_from_env( "diffbot_api_key", "DIFFBOT_API_KEY" ) self.fact_threshold_confidence = fact_confidence_threshold self.include_qualifiers = include_qualifiers self.include_evidence = include_evidence self.simplified_schema = None if simplified_schema: self.simplified_schema = SimplifiedSchema()
[docs] def nlp_request(self, text: str) -> Dict[str, Any]: """ Make an API request to the Diffbot NLP endpoint. Args: text (str): The text to be processed. Returns: Dict[str, Any]: The JSON response from the API. """ # Relationship extraction only works for English payload = { "content": text, "lang": "en", } FIELDS = "facts" HOST = "nl.diffbot.com" url = ( f"https://{HOST}/v1/?fields={FIELDS}&" f"token={self.diffbot_api_key}&language=en" ) result = requests.post(url, data=payload) return result.json()
[docs] def process_response( self, payload: Dict[str, Any], document: Document ) -> GraphDocument: """ Transform the Diffbot NLP response into a GraphDocument. Args: payload (Dict[str, Any]): The JSON response from Diffbot's NLP API. document (Document): The original document. Returns: GraphDocument: The transformed document as a graph. """ # Return empty result if there are no facts if "facts" not in payload or not payload["facts"]: return GraphDocument(nodes=[], relationships=[], source=document) # Nodes are a custom class because we need to deduplicate nodes_list = NodesList() # Relationships are a list because we don't deduplicate nor anything else relationships = list() for record in payload["facts"]: # Skip if the fact is below the threshold confidence if record["confidence"] < self.fact_threshold_confidence: continue # TODO: It should probably be treated as a node property if not record["value"]["allTypes"]: continue # Define source node source_id = ( record["entity"]["allUris"][0] if record["entity"]["allUris"] else record["entity"]["name"] ) source_label = record["entity"]["allTypes"][0]["name"].capitalize() source_name = record["entity"]["name"] source_node = Node(id=source_id, type=source_label) nodes_list.add_node_property( (source_id, source_label), {"name": source_name} ) # Define target node target_id = ( record["value"]["allUris"][0] if record["value"]["allUris"] else record["value"]["name"] ) target_label = record["value"]["allTypes"][0]["name"].capitalize() target_name = record["value"]["name"] # Some facts are better suited as node properties if target_label in FACT_TO_PROPERTY_TYPE: nodes_list.add_node_property( (source_id, source_label), {format_property_key(record["property"]["name"]): target_name}, ) else: # Define relationship # Define target node object target_node = Node(id=target_id, type=target_label) nodes_list.add_node_property( (target_id, target_label), {"name": target_name} ) # Define relationship type rel_type = record["property"]["name"].replace(" ", "_").upper() if self.simplified_schema: rel_type = self.simplified_schema.get_type(rel_type) # Relationship qualifiers/properties rel_properties = dict() relationship_evidence = [el["passage"] for el in record["evidence"]][0] if self.include_evidence: rel_properties.update({"evidence": relationship_evidence}) if self.include_qualifiers and record.get("qualifiers"): for property in record["qualifiers"]: prop_key = format_property_key(property["property"]["name"]) rel_properties[prop_key] = property["value"]["name"] relationship = Relationship( source=source_node, target=target_node, type=rel_type, properties=rel_properties, ) relationships.append(relationship) return GraphDocument( nodes=nodes_list.return_node_list(), relationships=relationships, source=document, )
[docs] def convert_to_graph_documents( self, documents: Sequence[Document] ) -> List[GraphDocument]: """Convert a sequence of documents into graph documents. Args: documents (Sequence[Document]): The original documents. **kwargs: Additional keyword arguments. Returns: Sequence[GraphDocument]: The transformed documents as graphs. """ results = [] for document in documents: raw_results = self.nlp_request(document.page_content) graph_document = self.process_response(raw_results, document) results.append(graph_document) return results