Source code for langchain_experimental.data_anonymizer.deanonymizer_matching_strategies
import re
from typing import List
from langchain_experimental.data_anonymizer.deanonymizer_mapping import MappingDataType
[docs]def exact_matching_strategy(text: str, deanonymizer_mapping: MappingDataType) -> str:
"""
Exact matching strategy for deanonymization.
It replaces all the anonymized entities with the original ones.
Args:
text: text to deanonymize
deanonymizer_mapping: mapping between anonymized entities and original ones"""
# Iterate over all the entities (PERSON, EMAIL_ADDRESS, etc.)
for entity_type in deanonymizer_mapping:
for anonymized, original in deanonymizer_mapping[entity_type].items():
text = text.replace(anonymized, original)
return text
[docs]def case_insensitive_matching_strategy(
text: str, deanonymizer_mapping: MappingDataType
) -> str:
"""
Case insensitive matching strategy for deanonymization.
It replaces all the anonymized entities with the original ones
irrespective of their letter case.
Args:
text: text to deanonymize
deanonymizer_mapping: mapping between anonymized entities and original ones
Examples of matching:
keanu reeves -> Keanu Reeves
JOHN F. KENNEDY -> John F. Kennedy
"""
# Iterate over all the entities (PERSON, EMAIL_ADDRESS, etc.)
for entity_type in deanonymizer_mapping:
for anonymized, original in deanonymizer_mapping[entity_type].items():
# Use regular expressions for case-insensitive matching and replacing
text = re.sub(anonymized, original, text, flags=re.IGNORECASE)
return text
[docs]def fuzzy_matching_strategy(
text: str, deanonymizer_mapping: MappingDataType, max_l_dist: int = 3
) -> str:
"""
Fuzzy matching strategy for deanonymization.
It uses fuzzy matching to find the position of the anonymized entity in the text.
It replaces all the anonymized entities with the original ones.
Args:
text: text to deanonymize
deanonymizer_mapping: mapping between anonymized entities and original ones
max_l_dist: maximum Levenshtein distance between the anonymized entity and the
text segment to consider it a match
Examples of matching:
Kaenu Reves -> Keanu Reeves
John F. Kennedy -> John Kennedy
"""
try:
from fuzzysearch import find_near_matches
except ImportError as e:
raise ImportError(
"Could not import fuzzysearch, please install with "
"`pip install fuzzysearch`."
) from e
for entity_type in deanonymizer_mapping:
for anonymized, original in deanonymizer_mapping[entity_type].items():
matches = find_near_matches(anonymized, text, max_l_dist=max_l_dist)
new_text = ""
last_end = 0
for m in matches:
# add the text that isn't part of a match
new_text += text[last_end : m.start]
# add the replacement text
new_text += original
last_end = m.end
# add the remaining text that wasn't part of a match
new_text += text[last_end:]
text = new_text
return text
[docs]def combined_exact_fuzzy_matching_strategy(
text: str, deanonymizer_mapping: MappingDataType, max_l_dist: int = 3
) -> str:
"""
RECOMMENDED STRATEGY.
Combined exact and fuzzy matching strategy for deanonymization.
Args:
text: text to deanonymize
deanonymizer_mapping: mapping between anonymized entities and original ones
max_l_dist: maximum Levenshtein distance between the anonymized entity and the
text segment to consider it a match
Examples of matching:
Kaenu Reves -> Keanu Reeves
John F. Kennedy -> John Kennedy
"""
text = exact_matching_strategy(text, deanonymizer_mapping)
text = fuzzy_matching_strategy(text, deanonymizer_mapping, max_l_dist)
return text
[docs]def ngram_fuzzy_matching_strategy(
text: str,
deanonymizer_mapping: MappingDataType,
fuzzy_threshold: int = 85,
use_variable_length: bool = True,
) -> str:
"""
N-gram fuzzy matching strategy for deanonymization.
It replaces all the anonymized entities with the original ones.
It uses fuzzy matching to find the position of the anonymized entity in the text.
It generates n-grams of the same length as the anonymized entity from the text and
uses fuzzy matching to find the position of the anonymized entity in the text.
Args:
text: text to deanonymize
deanonymizer_mapping: mapping between anonymized entities and original ones
fuzzy_threshold: fuzzy matching threshold
use_variable_length: whether to use (n-1, n, n+1)-grams or just n-grams
"""
def generate_ngrams(words_list: List[str], n: int) -> list:
"""Generate n-grams from a list of words"""
return [
" ".join(words_list[i : i + n]) for i in range(len(words_list) - (n - 1))
]
try:
from fuzzywuzzy import fuzz
except ImportError as e:
raise ImportError(
"Could not import fuzzywuzzy, please install with "
"`pip install fuzzywuzzy`."
) from e
text_words = text.split()
replacements = []
matched_indices: List[int] = []
for entity_type in deanonymizer_mapping:
for anonymized, original in deanonymizer_mapping[entity_type].items():
anonymized_words = anonymized.split()
if use_variable_length:
gram_lengths = [
len(anonymized_words) - 1,
len(anonymized_words),
len(anonymized_words) + 1,
]
else:
gram_lengths = [len(anonymized_words)]
for n in gram_lengths:
if n > 0: # Take only positive values
segments = generate_ngrams(text_words, n)
for i, segment in enumerate(segments):
if (
fuzz.ratio(anonymized.lower(), segment.lower())
> fuzzy_threshold
and i not in matched_indices
):
replacements.append((i, n, original))
# Add the matched segment indices to the list
matched_indices.extend(range(i, i + n))
# Sort replacements by index in reverse order
replacements.sort(key=lambda x: x[0], reverse=True)
# Apply replacements in reverse order to not affect subsequent indices
for start, length, replacement in replacements:
text_words[start : start + length] = replacement.split()
return " ".join(text_words)