Source code for langchain_core.prompts.base

from __future__ import annotations

import json
from abc import ABC, abstractmethod
from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    Mapping,
    Optional,
    Type,
    Union,
)

import yaml

from langchain_core.output_parsers.base import BaseOutputParser
from langchain_core.prompt_values import (
    ChatPromptValueConcrete,
    PromptValue,
    StringPromptValue,
)
from langchain_core.pydantic_v1 import BaseModel, Field, create_model, root_validator
from langchain_core.runnables import RunnableConfig, RunnableSerializable

if TYPE_CHECKING:
    from langchain_core.documents import Document


[docs]class BasePromptTemplate(RunnableSerializable[Dict, PromptValue], ABC): """Base class for all prompt templates, returning a prompt.""" input_variables: List[str] """A list of the names of the variables the prompt template expects.""" input_types: Dict[str, Any] = Field(default_factory=dict) """A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings.""" output_parser: Optional[BaseOutputParser] = None """How to parse the output of calling an LLM on this formatted prompt.""" partial_variables: Mapping[str, Union[str, Callable[[], str]]] = Field( default_factory=dict )
[docs] @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "prompt_template"]
[docs] @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable.""" return True
class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @property def OutputType(self) -> Any: return Union[StringPromptValue, ChatPromptValueConcrete]
[docs] def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: # This is correct, but pydantic typings/mypy don't think so. return create_model( # type: ignore[call-overload] "PromptInput", **{k: (self.input_types.get(k, str), None) for k in self.input_variables}, )
def _format_prompt_with_error_handling(self, inner_input: Dict) -> PromptValue: try: input_dict = {key: inner_input[key] for key in self.input_variables} except TypeError as e: raise TypeError( f"Expected mapping type as input to {self.__class__.__name__}. " f"Received {type(inner_input)}." ) from e except KeyError as e: raise KeyError( f"Input to {self.__class__.__name__} is missing variable {e}. " f" Expected: {self.input_variables}" f" Received: {list(inner_input.keys())}" ) from e return self.format_prompt(**input_dict)
[docs] def invoke( self, input: Dict, config: Optional[RunnableConfig] = None ) -> PromptValue: return self._call_with_config( self._format_prompt_with_error_handling, input, config, run_type="prompt", )
[docs] @abstractmethod def format_prompt(self, **kwargs: Any) -> PromptValue: """Create Chat Messages."""
@root_validator() def validate_variable_names(cls, values: Dict) -> Dict: """Validate variable names do not include restricted names.""" if "stop" in values["input_variables"]: raise ValueError( "Cannot have an input variable named 'stop', as it is used internally," " please rename." ) if "stop" in values["partial_variables"]: raise ValueError( "Cannot have an partial variable named 'stop', as it is used " "internally, please rename." ) overall = set(values["input_variables"]).intersection( values["partial_variables"] ) if overall: raise ValueError( f"Found overlapping input and partial variables: {overall}" ) return values
[docs] def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate: """Return a partial of the prompt template.""" prompt_dict = self.__dict__.copy() prompt_dict["input_variables"] = list( set(self.input_variables).difference(kwargs) ) prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs} return type(self)(**prompt_dict)
def _merge_partial_and_user_variables(self, **kwargs: Any) -> Dict[str, Any]: # Get partial params: partial_kwargs = { k: v if isinstance(v, str) else v() for k, v in self.partial_variables.items() } return {**partial_kwargs, **kwargs}
[docs] @abstractmethod def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """
@property def _prompt_type(self) -> str: """Return the prompt type key.""" raise NotImplementedError
[docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of prompt.""" prompt_dict = super().dict(**kwargs) try: prompt_dict["_type"] = self._prompt_type except NotImplementedError: pass return prompt_dict
[docs] def save(self, file_path: Union[Path, str]) -> None: """Save the prompt. Args: file_path: Path to directory to save prompt to. Example: .. code-block:: python prompt.save(file_path="path/prompt.yaml") """ if self.partial_variables: raise ValueError("Cannot save prompt with partial variables.") # Fetch dictionary to save prompt_dict = self.dict() if "_type" not in prompt_dict: raise NotImplementedError(f"Prompt {self} does not support saving.") # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(prompt_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(prompt_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml")
[docs]def format_document(doc: Document, prompt: BasePromptTemplate) -> str: """Format a document into a string based on a prompt template. First, this pulls information from the document from two sources: 1. `page_content`: This takes the information from the `document.page_content` and assigns it to a variable named `page_content`. 2. metadata: This takes information from `document.metadata` and assigns it to variables of the same name. Those variables are then passed into the `prompt` to produce a formatted string. Args: doc: Document, the page_content and metadata will be used to create the final string. prompt: BasePromptTemplate, will be used to format the page_content and metadata into the final string. Returns: string of the document formatted. Example: .. code-block:: python from langchain_core import Document from langchain_core.prompts import PromptTemplate doc = Document(page_content="This is a joke", metadata={"page": "1"}) prompt = PromptTemplate.from_template("Page {page}: {page_content}") format_document(doc, prompt) >>> "Page 1: This is a joke" """ base_info = {"page_content": doc.page_content, **doc.metadata} missing_metadata = set(prompt.input_variables).difference(base_info) if len(missing_metadata) > 0: required_metadata = [ iv for iv in prompt.input_variables if iv != "page_content" ] raise ValueError( f"Document prompt requires documents to have metadata variables: " f"{required_metadata}. Received document with missing metadata: " f"{list(missing_metadata)}." ) document_info = {k: base_info[k] for k in prompt.input_variables} return prompt.format(**document_info)