Source code for langchain_community.chat_models.yandex

"""Wrapper around YandexGPT chat models."""
import logging
from typing import Any, Dict, List, Optional, Tuple, cast

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatResult

from langchain_community.llms.utils import enforce_stop_tokens
from langchain_community.llms.yandex import _BaseYandexGPT

logger = logging.getLogger(__name__)


def _parse_message(role: str, text: str) -> Dict:
    return {"role": role, "text": text}


def _parse_chat_history(history: List[BaseMessage]) -> Tuple[List[Dict[str, str]], str]:
    """Parse a sequence of messages into history.

    Returns:
        A tuple of a list of parsed messages and an instruction message for the model.
    """
    chat_history = []
    instruction = ""
    for message in history:
        content = cast(str, message.content)
        if isinstance(message, HumanMessage):
            chat_history.append(_parse_message("user", content))
        if isinstance(message, AIMessage):
            chat_history.append(_parse_message("assistant", content))
        if isinstance(message, SystemMessage):
            instruction = content
    return chat_history, instruction


[docs]class ChatYandexGPT(_BaseYandexGPT, BaseChatModel): """Wrapper around YandexGPT large language models. There are two authentication options for the service account with the ``ai.languageModels.user`` role: - You can specify the token in a constructor parameter `iam_token` or in an environment variable `YC_IAM_TOKEN`. - You can specify the key in a constructor parameter `api_key` or in an environment variable `YC_API_KEY`. Example: .. code-block:: python from langchain_community.chat_models import ChatYandexGPT chat_model = ChatYandexGPT(iam_token="t1.9eu...") """ def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. stop: The list of stop words (optional). run_manager: The CallbackManager for LLM run, it's not used at the moment. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human. """ try: import grpc from google.protobuf.wrappers_pb2 import DoubleValue, Int64Value from yandex.cloud.ai.llm.v1alpha.llm_pb2 import GenerationOptions, Message from yandex.cloud.ai.llm.v1alpha.llm_service_pb2 import ChatRequest from yandex.cloud.ai.llm.v1alpha.llm_service_pb2_grpc import ( TextGenerationServiceStub, ) except ImportError as e: raise ImportError( "Please install YandexCloud SDK" " with `pip install yandexcloud`." ) from e if not messages: raise ValueError( "You should provide at least one message to start the chat!" ) message_history, instruction = _parse_chat_history(messages) channel_credentials = grpc.ssl_channel_credentials() channel = grpc.secure_channel(self.url, channel_credentials) request = ChatRequest( model=self.model_name, generation_options=GenerationOptions( temperature=DoubleValue(value=self.temperature), max_tokens=Int64Value(value=self.max_tokens), ), instruction_text=instruction, messages=[Message(**message) for message in message_history], ) stub = TextGenerationServiceStub(channel) if self.iam_token: metadata = (("authorization", f"Bearer {self.iam_token}"),) else: metadata = (("authorization", f"Api-Key {self.api_key}"),) res = stub.Chat(request, metadata=metadata) text = list(res)[0].message.text text = text if stop is None else enforce_stop_tokens(text, stop) message = AIMessage(content=text) return ChatResult(generations=[ChatGeneration(message=message)]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: raise NotImplementedError( """YandexGPT doesn't support async requests at the moment.""" )