Source code for langchain.output_parsers.openai_tools
import copy
import json
from typing import Any, List, Type
from langchain_core.exceptions import OutputParserException
from langchain_core.output_parsers import (
BaseGenerationOutputParser,
)
from langchain_core.outputs import ChatGeneration, Generation
from langchain_core.pydantic_v1 import BaseModel
[docs]class JsonOutputToolsParser(BaseGenerationOutputParser[Any]):
"""Parse tools from OpenAI response."""
[docs] def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
generation = result[0]
if not isinstance(generation, ChatGeneration):
raise OutputParserException(
"This output parser can only be used with a chat generation."
)
message = generation.message
try:
tool_calls = copy.deepcopy(message.additional_kwargs["tool_calls"])
except KeyError:
return []
final_tools = []
for tool_call in tool_calls:
if "function" not in tool_call:
pass
function_args = tool_call["function"]["arguments"]
final_tools.append(
{
"type": tool_call["function"]["name"],
"args": json.loads(function_args),
}
)
return final_tools
[docs]class JsonOutputKeyToolsParser(JsonOutputToolsParser):
"""Parse tools from OpenAI response."""
key_name: str
"""The type of tools to return."""
[docs] def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
results = super().parse_result(result)
return [res["args"] for res in results if results["type"] == self.key_name]
[docs]class PydanticToolsParser(JsonOutputToolsParser):
"""Parse tools from OpenAI response."""
tools: List[Type[BaseModel]]
[docs] def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
results = super().parse_result(result)
name_dict = {tool.__name__: tool for tool in self.tools}
return [name_dict[res["type"]](**res["args"]) for res in results]