Source code for langchain.memory.chat_memory

from abc import ABC
from typing import Any, Dict, Optional, Tuple

from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.memory import BaseMemory
from langchain_core.pydantic_v1 import Field

from langchain.memory.chat_message_histories.in_memory import ChatMessageHistory
from langchain.memory.utils import get_prompt_input_key


[docs]class BaseChatMemory(BaseMemory, ABC): """Abstract base class for chat memory.""" chat_memory: BaseChatMessageHistory = Field(default_factory=ChatMessageHistory) output_key: Optional[str] = None input_key: Optional[str] = None return_messages: bool = False def _get_input_output( self, inputs: Dict[str, Any], outputs: Dict[str, str] ) -> Tuple[str, str]: if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") output_key = list(outputs.keys())[0] else: output_key = self.output_key return inputs[prompt_input_key], outputs[output_key]
[docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) self.chat_memory.add_user_message(input_str) self.chat_memory.add_ai_message(output_str)
[docs] def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear()