langchain_community.vectorstores.vectara
.Vectara¶
- class langchain_community.vectorstores.vectara.Vectara(vectara_customer_id: Optional[str] = None, vectara_corpus_id: Optional[str] = None, vectara_api_key: Optional[str] = None, vectara_api_timeout: int = 120, source: str = 'langchain')[source]¶
Vectara API vector store.
See (https://vectara.com).
Example
from langchain_community.vectorstores import Vectara vectorstore = Vectara( vectara_customer_id=vectara_customer_id, vectara_corpus_id=vectara_corpus_id, vectara_api_key=vectara_api_key )
Initialize with Vectara API.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
([vectara_customer_id, ...])Initialize with Vectara API.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_files
(files_list[, metadatas])Vectara provides a way to add documents directly via our API where pre-processing and chunking occurs internally in an optimal way This method provides a way to use that API in LangChain
add_texts
(texts[, metadatas, doc_metadata])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
delete
([ids])Delete by vector ID or other criteria.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_files
(files[, embedding, metadatas])Construct Vectara wrapper from raw documents.
from_texts
(texts[, embedding, metadatas])Construct Vectara wrapper from raw documents.
max_marginal_relevance_search
(query[, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query, **kwargs)Return Vectara documents most similar to query, along with scores.
similarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query, **kwargs)Return Vectara documents most similar to query, along with scores.
vectara_query
(query, config, **kwargs)Run a Vectara query
- Parameters
vectara_customer_id (Optional[str]) –
vectara_corpus_id (Optional[str]) –
vectara_api_key (Optional[str]) –
vectara_api_timeout (int) –
source (str) –
- __init__(vectara_customer_id: Optional[str] = None, vectara_corpus_id: Optional[str] = None, vectara_api_key: Optional[str] = None, vectara_api_timeout: int = 120, source: str = 'langchain')[source]¶
Initialize with Vectara API.
- Parameters
vectara_customer_id (Optional[str]) –
vectara_corpus_id (Optional[str]) –
vectara_api_key (Optional[str]) –
vectara_api_timeout (int) –
source (str) –
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_files(files_list: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] [source]¶
Vectara provides a way to add documents directly via our API where pre-processing and chunking occurs internally in an optimal way This method provides a way to use that API in LangChain
- Parameters
files_list (Iterable[str]) – Iterable of strings, each representing a local file path. Files could be text, HTML, PDF, markdown, doc/docx, ppt/pptx, etc. see API docs for full list
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with each file
kwargs (Any) –
- Returns
List of ids associated with each of the files indexed
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, doc_metadata: Optional[dict] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.
doc_metadata (Optional[dict]) – optional metadata for the document
kwargs (Any) –
- Return type
List[str]
This function indexes all the input text strings in the Vectara corpus as a single Vectara document, where each input text is considered a “section” and the metadata are associated with each section. if ‘doc_metadata’ is provided, it is associated with the Vectara document.
- Returns
document ID of the document added
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
doc_metadata (Optional[dict]) –
kwargs (Any) –
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- classmethod from_files(files: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, **kwargs: Any) Vectara [source]¶
Construct Vectara wrapper from raw documents. This is intended to be a quick way to get started. .. rubric:: Example
from langchain_community.vectorstores import Vectara vectara = Vectara.from_files( files_list, vectara_customer_id=customer_id, vectara_corpus_id=corpus_id, vectara_api_key=api_key, )
- Parameters
files (List[str]) –
embedding (Optional[Embeddings]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
- classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, **kwargs: Any) Vectara [source]¶
Construct Vectara wrapper from raw documents. This is intended to be a quick way to get started. .. rubric:: Example
from langchain_community.vectorstores import Vectara vectara = Vectara.from_texts( texts, vectara_customer_id=customer_id, vectara_corpus_id=corpus_id, vectara_api_key=api_key, )
- Parameters
texts (List[str]) –
embedding (Optional[Embeddings]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
- max_marginal_relevance_search(query: str, fetch_k: int = 50, lambda_mult: float = 0.5, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 5.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 50
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) – any other querying variable in VectaraQueryConfig
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, **kwargs: Any) List[Document] [source]¶
Return Vectara documents most similar to query, along with scores.
- Parameters
query (str) – Text to look up documents similar to.
VectaraQueryConfig (any other querying variable in) –
kwargs (Any) –
- Returns
List of Documents most similar to the query
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return Vectara documents most similar to query, along with scores.
- Parameters
query (str) – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 10.
like (any other querying variable in VectaraQueryConfig) –
lambda_val (-) – lexical match parameter for hybrid search.
filter (-) – filter string
score_threshold (-) – minimal score threshold for the result.
n_sentence_context (-) – number of sentences before/after the matching segment
mmr_config (-) – optional configuration for MMR (see MMRConfig dataclass)
summary_config (-) – optional configuration for summary (see SummaryConfig dataclass)
kwargs (Any) –
- Returns
List of Documents most similar to the query and score for each.
- Return type
List[Tuple[Document, float]]
- vectara_query(query: str, config: VectaraQueryConfig, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Run a Vectara query
- Parameters
query (str) – Text to look up documents similar to.
config (VectaraQueryConfig) – VectaraQueryConfig object
kwargs (Any) –
- Returns
A list of k Documents matching the given query If summary is enabled, last document is the summary text with ‘summary’=True
- Return type
List[Tuple[Document, float]]