langchain_community.vectorstores.rocksetdb
.Rockset¶
- class langchain_community.vectorstores.rocksetdb.Rockset(client: Any, embeddings: Embeddings, collection_name: str, text_key: str, embedding_key: str, workspace: str = 'commons')[source]¶
Rockset vector store.
To use, you should have the rockset python package installed. Note that to use this, the collection being used must already exist in your Rockset instance. You must also ensure you use a Rockset ingest transformation to apply VECTOR_ENFORCE on the column being used to store embedding_key in the collection. See: https://rockset.com/blog/introducing-vector-search-on-rockset/ for more details
Everything below assumes commons Rockset workspace.
Example
from langchain_community.vectorstores import Rockset from langchain_community.embeddings.openai import OpenAIEmbeddings import rockset # Make sure you use the right host (region) for your Rockset instance # and APIKEY has both read-write access to your collection. rs = rockset.RocksetClient(host=rockset.Regions.use1a1, api_key="***") collection_name = "langchain_demo" embeddings = OpenAIEmbeddings() vectorstore = Rockset(rs, collection_name, embeddings, "description", "description_embedding")
Initialize with Rockset client. :param client: Rockset client object :param collection: Rockset collection to insert docs / query :param embeddings: Langchain Embeddings object to use to generate
embedding for given text.
- Parameters
text_key (str) – column in Rockset collection to use to store the text
embedding_key (str) – column in Rockset collection to use to store the embedding. Note: We must apply VECTOR_ENFORCE() on this column via Rockset ingest transformation.
client (Any) –
embeddings (Embeddings) –
collection_name (str) –
workspace (str) –
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(client, embeddings, ...[, workspace])Initialize with Rockset client. :param client: Rockset client object :param collection: Rockset collection to insert docs / query :param embeddings: Langchain Embeddings object to use to generate embedding for given text. :param text_key: column in Rockset collection to use to store the text :param embedding_key: column in Rockset collection to use to store the embedding. Note: We must apply VECTOR_ENFORCE() on this column via Rockset ingest transformation.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, ids, batch_size])Run more texts through the embeddings and add to the vectorstore
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
delete
([ids])Delete by vector ID or other criteria.
delete_texts
(ids)Delete a list of docs from the Rockset collection
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_texts
(texts, embedding[, metadatas, ...])Create Rockset wrapper with existing texts.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, distance_func, ...])Same as similarity_search_with_relevance_scores but doesn't return the scores.
similarity_search_by_vector
(embedding[, k, ...])Accepts a query_embedding (vector), and returns documents with similar embeddings.
Accepts a query_embedding (vector), and returns documents with similar embeddings along with their relevance scores.
Perform a similarity search with Rockset
similarity_search_with_score
(*args, **kwargs)Run similarity search with distance.
- __init__(client: Any, embeddings: Embeddings, collection_name: str, text_key: str, embedding_key: str, workspace: str = 'commons')[source]¶
Initialize with Rockset client. :param client: Rockset client object :param collection: Rockset collection to insert docs / query :param embeddings: Langchain Embeddings object to use to generate
embedding for given text.
- Parameters
text_key (str) – column in Rockset collection to use to store the text
embedding_key (str) – column in Rockset collection to use to store the embedding. Note: We must apply VECTOR_ENFORCE() on this column via Rockset ingest transformation.
client (Any) –
embeddings (Embeddings) –
collection_name (str) –
workspace (str) –
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore
Args:
texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. batch_size: Send documents in batches to rockset.
- Returns
List of ids from adding the texts into the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
ids (Optional[List[str]]) –
batch_size (int) –
kwargs (Any) –
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] [source]¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] [source]¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- delete_texts(ids: List[str]) None [source]¶
Delete a list of docs from the Rockset collection
- Parameters
ids (List[str]) –
- Return type
None
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Any = None, collection_name: str = '', text_key: str = '', embedding_key: str = '', ids: Optional[List[str]] = None, batch_size: int = 32, **kwargs: Any) Rockset [source]¶
Create Rockset wrapper with existing texts. This is intended as a quicker way to get started.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
client (Any) –
collection_name (str) –
text_key (str) –
embedding_key (str) –
ids (Optional[List[str]]) –
batch_size (int) –
kwargs (Any) –
- Return type
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, distance_func: DistanceFunction = DistanceFunction.COSINE_SIM, where_str: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Same as similarity_search_with_relevance_scores but doesn’t return the scores.
- Parameters
query (str) –
k (int) –
distance_func (DistanceFunction) –
where_str (Optional[str]) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, distance_func: DistanceFunction = DistanceFunction.COSINE_SIM, where_str: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Accepts a query_embedding (vector), and returns documents with similar embeddings.
- Parameters
embedding (List[float]) –
k (int) –
distance_func (DistanceFunction) –
where_str (Optional[str]) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search_by_vector_with_relevance_scores(embedding: List[float], k: int = 4, distance_func: DistanceFunction = DistanceFunction.COSINE_SIM, where_str: Optional[str] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Accepts a query_embedding (vector), and returns documents with similar embeddings along with their relevance scores.
- Parameters
embedding (List[float]) –
k (int) –
distance_func (DistanceFunction) –
where_str (Optional[str]) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- similarity_search_with_relevance_scores(query: str, k: int = 4, distance_func: DistanceFunction = DistanceFunction.COSINE_SIM, where_str: Optional[str] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Perform a similarity search with Rockset
- Parameters
query (str) – Text to look up documents similar to.
distance_func (DistanceFunction) – how to compute distance between two vectors in Rockset.
k (int, optional) – Top K neighbors to retrieve. Defaults to 4.
where_str (Optional[str], optional) – Metadata filters supplied as a SQL where condition string. Defaults to None. eg. “price<=70.0 AND brand=’Nintendo’”
NOTE – Please do not let end-user to fill this and always be aware of SQL injection.
kwargs (Any) –
- Returns
List of documents with their relevance score
- Return type
List[Tuple[Document, float]]