langchain_community.vectorstores.meilisearch
.Meilisearch¶
- class langchain_community.vectorstores.meilisearch.Meilisearch(embedding: Embeddings, client: Optional[Client] = None, url: Optional[str] = None, api_key: Optional[str] = None, index_name: str = 'langchain-demo', text_key: str = 'text', metadata_key: str = 'metadata')[source]¶
Meilisearch vector store.
To use this, you need to have meilisearch python package installed, and a running Meilisearch instance.
To learn more about Meilisearch Python, refer to the in-depth Meilisearch Python documentation: https://meilisearch.github.io/meilisearch-python/.
See the following documentation for how to run a Meilisearch instance: https://www.meilisearch.com/docs/learn/getting_started/quick_start.
Example
from langchain_community.vectorstores import Meilisearch from langchain_community.embeddings.openai import OpenAIEmbeddings import meilisearch # api_key is optional; provide it if your meilisearch instance requires it client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***') embeddings = OpenAIEmbeddings() vectorstore = Meilisearch( embedding=embeddings, client=client, index_name='langchain_demo', text_key='text')
Initialize with Meilisearch client.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(embedding[, client, url, api_key, ...])Initialize with Meilisearch client.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, ids])Run more texts through the embedding and add them to the vector store.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
delete
([ids])Delete by vector ID or other criteria.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_texts
(texts, embedding[, metadatas, ...])Construct Meilisearch wrapper from raw documents.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, filter])Return meilisearch documents most similar to the query.
similarity_search_by_vector
(embedding[, k, ...])Return meilisearch documents most similar to embedding vector.
Return meilisearch documents most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, filter])Return meilisearch documents most similar to the query, along with scores.
- Parameters
embedding (Embeddings) –
client (Optional[Client]) –
url (Optional[str]) –
api_key (Optional[str]) –
index_name (str) –
text_key (str) –
metadata_key (str) –
- __init__(embedding: Embeddings, client: Optional[Client] = None, url: Optional[str] = None, api_key: Optional[str] = None, index_name: str = 'langchain-demo', text_key: str = 'text', metadata_key: str = 'metadata')[source]¶
Initialize with Meilisearch client.
- Parameters
embedding (Embeddings) –
client (Optional[Client]) –
url (Optional[str]) –
api_key (Optional[str]) –
index_name (str) –
text_key (str) –
metadata_key (str) –
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embedding and add them to the vector store.
- Parameters
texts (Iterable[str]) – Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadata. Defaults to None.
Optional[List[str]] (ids) – Optional list of IDs. Defaults to None.
ids (Optional[List[str]]) –
kwargs (Any) –
- Returns
List of IDs of the texts added to the vectorstore.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Optional[Client] = None, url: Optional[str] = None, api_key: Optional[str] = None, index_name: str = 'langchain-demo', ids: Optional[List[str]] = None, text_key: Optional[str] = 'text', metadata_key: Optional[str] = 'metadata', **kwargs: Any) Meilisearch [source]¶
Construct Meilisearch wrapper from raw documents.
- This is a user-friendly interface that:
Embeds documents.
Adds the documents to a provided Meilisearch index.
This is intended to be a quick way to get started.
Example
from langchain_community.vectorstores import Meilisearch from langchain_community.embeddings import OpenAIEmbeddings import meilisearch # The environment should be the one specified next to the API key # in your Meilisearch console client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***') embeddings = OpenAIEmbeddings() docsearch = Meilisearch.from_texts( client=client, embeddings=embeddings, )
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
client (Optional[Client]) –
url (Optional[str]) –
api_key (Optional[str]) –
index_name (str) –
ids (Optional[List[str]]) –
text_key (Optional[str]) –
metadata_key (Optional[str]) –
kwargs (Any) –
- Return type
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return meilisearch documents most similar to the query.
- Parameters
query (str) – Query text for which to find similar documents.
k (int) – Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents most similar to the query text and score for each.
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return meilisearch documents most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up similar documents.
k (int) – Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
- List of Documents most similar to the query
vector and score for each.
- Return type
List[Document]
- similarity_search_by_vector_with_scores(embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return meilisearch documents most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up similar documents.
k (int) – Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
- List of Documents most similar to the query
vector and score for each.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return meilisearch documents most similar to the query, along with scores.
- Parameters
query (str) – Query text for which to find similar documents.
k (int) – Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents most similar to the query text and score for each.
- Return type
List[Document]