langchain_community.vectorstores.kinetica
.Kinetica¶
- class langchain_community.vectorstores.kinetica.Kinetica(config: KineticaSettings, embedding_function: Embeddings, collection_name: str = 'langchain_kinetica_embeddings', schema_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None)[source]¶
Kinetica vector store.
To use, you should have the
gpudb
python package installed.- Parameters
kinetica_settings – Kinetica connection settings class.
embedding_function (Embeddings) – Any embedding function implementing langchain.embeddings.base.Embeddings interface.
collection_name (str) – The name of the collection to use. (default: langchain) NOTE: This is not the name of the table, but the name of the collection. The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables.
distance_strategy (DistanceStrategy) – The distance strategy to use. (default: COSINE)
pre_delete_collection (bool) – If True, will delete the collection if it exists. (default: False). Useful for testing.
engine_args – SQLAlchemy’s create engine arguments.
config (KineticaSettings) –
schema_name (str) –
logger (Optional[logging.Logger]) –
relevance_score_fn (Optional[Callable[[float], float]]) –
Example
from langchain_community.vectorstores import Kinetica, KineticaSettings from langchain_community.embeddings.openai import OpenAIEmbeddings kinetica_settings = KineticaSettings( host="http://127.0.0.1", username="", password="" ) COLLECTION_NAME = "kinetica_store" embeddings = OpenAIEmbeddings() vectorstore = Kinetica.from_documents( documents=docs, embedding=embeddings, collection_name=COLLECTION_NAME, config=kinetica_settings, )
Constructor for the Kinetica class
- Parameters
config (KineticaSettings) – a KineticaSettings instance
embedding_function (Embeddings) – embedding function to use
collection_name (str, optional) – the Kinetica table name. Defaults to _LANGCHAIN_DEFAULT_COLLECTION_NAME.
schema_name (str, optional) – the Kinetica table name. Defaults to _LANGCHAIN_DEFAULT_SCHEMA_NAME.
distance_strategy (DistanceStrategy, optional) – _description_. Defaults to DEFAULT_DISTANCE_STRATEGY.
pre_delete_collection (bool, optional) – _description_. Defaults to False.
logger (Optional[logging.Logger], optional) – _description_. Defaults to None.
relevance_score_fn (Optional[Callable[[float], float]]) –
Attributes
distance_strategy
embeddings
Access the query embedding object if available.
Methods
__init__
(config, embedding_function[, ...])Constructor for the Kinetica class
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_embeddings
(texts, embeddings[, ...])Add embeddings to the vectorstore.
add_texts
(texts[, metadatas, ids])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
Create a new Kinetica schema
Create the table to store the texts and embeddings
delete
([ids])Delete by vector ID or other criteria.
Delete a Kinetica schema with cascade set to true This method will delete a schema with all tables in it.
Delete the table
from_documents
(documents, embedding[, ...])Adds the list of Document passed in to the vector store and returns it
from_embeddings
(text_embeddings, embedding)Adds the embeddings passed in to the vector store and returns it
from_texts
(texts, embedding[, metadatas, ...])Adds the texts passed in to the vector store and returns it
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance
Return docs selected using the maximal marginal relevance with score.
Return docs selected using the maximal marginal relevance with score
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, filter])Run similarity search with Kinetica with distance.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, filter])Return docs most similar to query.
similarity_search_with_score_by_vector
(embedding)- __init__(config: KineticaSettings, embedding_function: Embeddings, collection_name: str = 'langchain_kinetica_embeddings', schema_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None) None [source]¶
Constructor for the Kinetica class
- Parameters
config (KineticaSettings) – a KineticaSettings instance
embedding_function (Embeddings) – embedding function to use
collection_name (str, optional) – the Kinetica table name. Defaults to _LANGCHAIN_DEFAULT_COLLECTION_NAME.
schema_name (str, optional) – the Kinetica table name. Defaults to _LANGCHAIN_DEFAULT_SCHEMA_NAME.
distance_strategy (DistanceStrategy, optional) – _description_. Defaults to DEFAULT_DISTANCE_STRATEGY.
pre_delete_collection (bool, optional) – _description_. Defaults to False.
logger (Optional[logging.Logger], optional) – _description_. Defaults to None.
relevance_score_fn (Optional[Callable[[float], float]]) –
- Return type
None
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_embeddings(texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Add embeddings to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
embeddings (List[List[float]]) – List of list of embedding vectors.
metadatas (Optional[List[dict]]) – List of metadatas associated with the texts.
ids (Optional[List[str]]) – List of ids for the text embedding pairs
kwargs (Any) – vectorstore specific parameters
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas (JSON data) associated with the texts.
ids (Optional[List[str]]) – List of IDs (UUID) for the texts supplied; will be generated if None
kwargs (Any) – vectorstore specific parameters
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
filter (Optional[Dict[str, str]]) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- create_tables_if_not_exists() Any [source]¶
Create the table to store the texts and embeddings
- Return type
Any
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- delete_schema() None [source]¶
Delete a Kinetica schema with cascade set to true This method will delete a schema with all tables in it.
- Return type
None
- classmethod from_documents(documents: List[Document], embedding: Embeddings, config: KineticaSettings = KineticaSettings(host='http://127.0.0.1', port=9191, username=None, password=None, database='langchain', table='langchain_kinetica_embeddings', metric='l2'), metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain_kinetica_embeddings', distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) Kinetica [source]¶
Adds the list of Document passed in to the vector store and returns it
- Parameters
cls (Type[Kinetica]) – Kinetica class
texts (List[str]) – A list of texts for which the embeddings are generated
embedding (Embeddings) – List of embeddings
config (KineticaSettings) – a KineticaSettings instance
metadatas (Optional[List[dict]], optional) – List of dicts, JSON describing the texts/documents. Defaults to None.
collection_name (str, optional) – Kinetica schema name. Defaults to _LANGCHAIN_DEFAULT_COLLECTION_NAME.
distance_strategy (DistanceStrategy, optional) – Distance strategy e.g., l2, cosine etc.. Defaults to DEFAULT_DISTANCE_STRATEGY.
ids (Optional[List[str]], optional) – A list of UUIDs for each text/document. Defaults to None.
pre_delete_collection (bool, optional) – Indicates whether the Kinetica schema is to be deleted or not. Defaults to False.
documents (List[Document]) –
kwargs (Any) –
- Returns
a Kinetica instance
- Return type
- classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, config: KineticaSettings = KineticaSettings(host='http://127.0.0.1', port=9191, username=None, password=None, database='langchain', table='langchain_kinetica_embeddings', metric='l2'), dimensions: int = Dimension.OPENAI, collection_name: str = 'langchain_kinetica_embeddings', distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) Kinetica [source]¶
Adds the embeddings passed in to the vector store and returns it
- Parameters
cls (Type[Kinetica]) – Kinetica class
text_embeddings (List[Tuple[str, List[float]]]) – A list of texts and the embeddings
embedding (Embeddings) – List of embeddings
metadatas (Optional[List[dict]], optional) – List of dicts, JSON describing the texts/documents. Defaults to None.
config (KineticaSettings) – a KineticaSettings instance
dimensions (int, optional) – Dimension for the vector data, if not passed a default will be used. Defaults to Dimension.OPENAI.
collection_name (str, optional) – Kinetica schema name. Defaults to _LANGCHAIN_DEFAULT_COLLECTION_NAME.
distance_strategy (DistanceStrategy, optional) – Distance strategy e.g., l2, cosine etc.. Defaults to DEFAULT_DISTANCE_STRATEGY.
ids (Optional[List[str]], optional) – A list of UUIDs for each text/document. Defaults to None.
pre_delete_collection (bool, optional) – Indicates whether the Kinetica schema is to be deleted or not. Defaults to False.
kwargs (Any) –
- Returns
a Kinetica instance
- Return type
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, config: KineticaSettings = KineticaSettings(host='http://127.0.0.1', port=9191, username=None, password=None, database='langchain', table='langchain_kinetica_embeddings', metric='l2'), collection_name: str = 'langchain_kinetica_embeddings', distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) Kinetica [source]¶
Adds the texts passed in to the vector store and returns it
- Parameters
cls (Type[Kinetica]) – Kinetica class
texts (List[str]) – A list of texts for which the embeddings are generated
embedding (Embeddings) – List of embeddings
metadatas (Optional[List[dict]], optional) – List of dicts, JSON describing the texts/documents. Defaults to None.
config (KineticaSettings) – a KineticaSettings instance
collection_name (str, optional) – Kinetica schema name. Defaults to _LANGCHAIN_DEFAULT_COLLECTION_NAME.
distance_strategy (DistanceStrategy, optional) – Distance strategy e.g., l2, cosine etc.. Defaults to DEFAULT_DISTANCE_STRATEGY.
ids (Optional[List[str]], optional) – A list of UUIDs for each text/document. Defaults to None.
pre_delete_collection (bool, optional) – Indicates whether the Kinetica schema is to be deleted or not. Defaults to False.
kwargs (Any) –
- Returns
a Kinetica instance
- Return type
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
- Return docs selected using the maximal marginal relevance
to embedding vector.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
embedding (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_with_score(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs selected using the maximal marginal relevance with score.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
- List of Documents selected by maximal marginal
relevance to the query and score for each.
- Return type
List[Tuple[Document, float]]
- max_marginal_relevance_search_with_score_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
- Return docs selected using the maximal marginal relevance with score
to embedding vector.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
- List of Documents selected by maximal marginal
relevance to the query and score for each.
- Return type
List[Tuple[Document, float]]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Run similarity search with Kinetica with distance.
- Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents most similar to the query.
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query and score for each
- Return type
List[Tuple[Document, float]]