langchain_community.vectorstores.hanavector
.HanaDB¶
- class langchain_community.vectorstores.hanavector.HanaDB(connection: dbapi.Connection, embedding: Embeddings, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, table_name: str = 'EMBEDDINGS', content_column: str = 'VEC_TEXT', metadata_column: str = 'VEC_META', vector_column: str = 'VEC_VECTOR', vector_column_length: int = -1)[source]¶
SAP HANA Cloud Vector Engine
The prerequisite for using this class is the installation of the
hdbcli
Python package.The HanaDB vectorstore can be created by providing an embedding function and an existing database connection. Optionally, the names of the table and the columns to use.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(connection, embedding[, ...])aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, embeddings])Add more texts to the vectorstore.
adelete
([ids, filter])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
delete
([ids, filter])Delete entries by filter with metadata values
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_texts
(texts, embedding[, metadatas, ...])Create a HanaDB instance from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a table if it does not yet exist. 3. Adds the documents to the table. This is intended to be a quick way to get started.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, filter])Return docs most similar to query.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, filter])Return documents and score values most similar to query.
Return docs most similar to the given embedding.
similarity_search_with_score_by_vector
(embedding)Return docs most similar to the given embedding.
- Parameters
connection (dbapi.Connection) –
embedding (Embeddings) –
distance_strategy (DistanceStrategy) –
table_name (str) –
content_column (str) –
metadata_column (str) –
vector_column (str) –
vector_column_length (int) –
- __init__(connection: dbapi.Connection, embedding: Embeddings, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, table_name: str = 'EMBEDDINGS', content_column: str = 'VEC_TEXT', metadata_column: str = 'VEC_META', vector_column: str = 'VEC_VECTOR', vector_column_length: int = -1)[source]¶
- Parameters
connection (dbapi.Connection) –
embedding (Embeddings) –
distance_strategy (DistanceStrategy) –
table_name (str) –
content_column (str) –
metadata_column (str) –
vector_column (str) –
vector_column_length (int) –
- async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, embeddings: Optional[List[List[float]]] = None) → List[str][source]¶
Add more texts to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]], optional) – Optional list of metadatas. Defaults to None.
embeddings (Optional[List[List[float]]], optional) – Optional pre-generated embeddings. Defaults to None.
- Returns
empty list
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, filter: Optional[dict] = None) → Optional[bool][source]¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
filter (Optional[dict]) –
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5) → List[Document][source]¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) → VectorStoreRetriever¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) → List[Tuple[Document, float]]¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- delete(ids: Optional[List[str]] = None, filter: Optional[dict] = None) → Optional[bool][source]¶
Delete entries by filter with metadata values
- Parameters
ids (Optional[List[str]]) – Deletion with ids is not supported! A ValueError will be raised.
filter (Optional[dict]) – A dictionary of metadata fields and values to filter by. An empty filter ({}) will delete all entries in the table.
- Returns
True, if deletion is technically successful. Deletion of zero entries, due to non-matching filters is a success.
- Return type
Optional[bool]
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, connection: dbapi.Connection = None, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, table_name: str = 'EMBEDDINGS', content_column: str = 'VEC_TEXT', metadata_column: str = 'VEC_META', vector_column: str = 'VEC_VECTOR', vector_column_length: int = -1)[source]¶
Create a HanaDB instance from raw documents. This is a user-friendly interface that:
Embeds documents.
Creates a table if it does not yet exist.
Adds the documents to the table.
This is intended to be a quick way to get started.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
connection (dbapi.Connection) –
distance_strategy (DistanceStrategy) –
table_name (str) –
content_column (str) –
metadata_column (str) –
vector_column (str) –
vector_column_length (int) –
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None) → List[Document][source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – search query text.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[dict]) –
Filter on metadata properties, e.g. {
”str_property”: “foo”, “int_property”: 123
}
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None) → List[Document][source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[dict]) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, filter: Optional[dict] = None) → List[Document][source]¶
Return docs most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[dict]) – A dictionary of metadata fields and values to filter by. Defaults to None.
- Returns
List of Documents most similar to the query
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None) → List[Document][source]¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[dict]) – A dictionary of metadata fields and values to filter by. Defaults to None.
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float]][source]¶
Return documents and score values most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[dict]) – A dictionary of metadata fields and values to filter by. Defaults to None.
- Returns
List of tuples (containing a Document and a score) that are most similar to the query
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score_and_vector_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float, List[float]]][source]¶
Return docs most similar to the given embedding.
- Parameters
query – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[dict]) – A dictionary of metadata fields and values to filter by. Defaults to None.
embedding (List[float]) –
- Returns
List of Documents most similar to the query and score and the document’s embedding vector for each
- Return type
List[Tuple[Document, float, List[float]]]
- similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float]][source]¶
Return docs most similar to the given embedding.
- Parameters
query – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[dict]) – A dictionary of metadata fields and values to filter by. Defaults to None.
embedding (List[float]) –
- Returns
List of Documents most similar to the query and score for each
- Return type
List[Tuple[Document, float]]