langchain_community.vectorstores.faiss
.FAISS¶
- class langchain_community.vectorstores.faiss.FAISS(embedding_function: Union[Callable[[str], List[float]], Embeddings], index: Any, docstore: Docstore, index_to_docstore_id: Dict[int, str], relevance_score_fn: Optional[Callable[[float], float]] = None, normalize_L2: bool = False, distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN_DISTANCE)[source]¶
Meta Faiss vector store.
To use, you must have the
faiss
python package installed.Example
from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS embeddings = OpenAIEmbeddings() texts = ["FAISS is an important library", "LangChain supports FAISS"] faiss = FAISS.from_texts(texts, embeddings)
Initialize with necessary components.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(embedding_function, index, ...[, ...])Initialize with necessary components.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas, ids])Run more texts through the embeddings and add to the vectorstore
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_embeddings
(text_embeddings[, metadatas, ids])Add the given texts and embeddings to the vectorstore.
add_texts
(texts[, metadatas, ids])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_embeddings
(text_embeddings, embedding)Construct FAISS wrapper from raw documents asynchronously.
afrom_texts
(texts, embedding[, metadatas, ids])Construct FAISS wrapper from raw documents asynchronously.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance asynchronously.
Return docs selected using the maximal marginal relevance asynchronously.
Return docs and their similarity scores selected using the maximal marginal
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k, filter, fetch_k])Return docs most similar to query asynchronously.
asimilarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector asynchronously.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(query[, k, ...])Return docs most similar to query asynchronously.
Return docs most similar to query asynchronously.
delete
([ids])Delete by ID.
deserialize_from_bytes
(serialized, ...)Deserialize FAISS index, docstore, and index_to_docstore_id from bytes.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_embeddings
(text_embeddings, embedding)Construct FAISS wrapper from raw documents.
from_texts
(texts, embedding[, metadatas, ids])Construct FAISS wrapper from raw documents.
load_local
(folder_path, embeddings[, ...])Load FAISS index, docstore, and index_to_docstore_id from disk.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
Return docs and their similarity scores selected using the maximal marginal
merge_from
(target)Merge another FAISS object with the current one.
save_local
(folder_path[, index_name])Save FAISS index, docstore, and index_to_docstore_id to disk.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
Serialize FAISS index, docstore, and index_to_docstore_id to bytes.
similarity_search
(query[, k, filter, fetch_k])Return docs most similar to query.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, ...])Return docs most similar to query.
similarity_search_with_score_by_vector
(embedding)Return docs most similar to query.
- Parameters
embedding_function (Union[Callable[[str], List[float]], Embeddings]) –
index (Any) –
docstore (Docstore) –
index_to_docstore_id (Dict[int, str]) –
relevance_score_fn (Optional[Callable[[float], float]]) –
normalize_L2 (bool) –
distance_strategy (DistanceStrategy) –
- __init__(embedding_function: Union[Callable[[str], List[float]], Embeddings], index: Any, docstore: Docstore, index_to_docstore_id: Dict[int, str], relevance_score_fn: Optional[Callable[[float], float]] = None, normalize_L2: bool = False, distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN_DISTANCE)[source]¶
Initialize with necessary components.
- Parameters
embedding_function (Union[Callable[[str], List[float]], Embeddings]) –
index (Any) –
docstore (Docstore) –
index_to_docstore_id (Dict[int, str]) –
relevance_score_fn (Optional[Callable[[float], float]]) –
normalize_L2 (bool) –
distance_strategy (DistanceStrategy) –
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
- Run more texts through the embeddings and add to the vectorstore
asynchronously.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.
ids (Optional[List[str]]) – Optional list of unique IDs.
kwargs (Any) –
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_embeddings(text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Add the given texts and embeddings to the vectorstore.
- Parameters
text_embeddings (Iterable[Tuple[str, List[float]]]) – Iterable pairs of string and embedding to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.
ids (Optional[List[str]]) – Optional list of unique IDs.
kwargs (Any) –
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.
ids (Optional[List[str]]) – Optional list of unique IDs.
kwargs (Any) –
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_embeddings(text_embeddings: Iterable[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[Iterable[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) FAISS [source]¶
Construct FAISS wrapper from raw documents asynchronously.
- Parameters
text_embeddings (Iterable[Tuple[str, List[float]]]) –
embedding (Embeddings) –
metadatas (Optional[Iterable[dict]]) –
ids (Optional[List[str]]) –
kwargs (Any) –
- Return type
- async classmethod afrom_texts(texts: list[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) FAISS [source]¶
Construct FAISS wrapper from raw documents asynchronously.
- This is a user friendly interface that:
Embeds documents.
Creates an in memory docstore
Initializes the FAISS database
This is intended to be a quick way to get started.
Example
from langchain_community.vectorstores import FAISS from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = await FAISS.afrom_texts(texts, embeddings)
- Parameters
texts (list[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
ids (Optional[List[str]]) –
kwargs (Any) –
- Return type
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Union[Callable, Dict[str, Any]]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance asynchronously.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch before filtering (if needed) to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Union[Callable, Dict[str, Any]]]) –
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Union[Callable, Dict[str, Any]]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance asynchronously.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch before filtering to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Union[Callable, Dict[str, Any]]]) –
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- async amax_marginal_relevance_search_with_score_by_vector(embedding: List[float], *, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Union[Callable, Dict[str, Any]]] = None) List[Tuple[Document, float]] [source]¶
- Return docs and their similarity scores selected using the maximal marginal
relevance asynchronously.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch before filtering to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Union[Callable, Dict[str, Any]]]) –
- Returns
- List of Documents and similarity scores selected by maximal marginal
relevance and score for each.
- Return type
List[Tuple[Document, float]]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any) List[Document] [source]¶
Return docs most similar to query asynchronously.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Union[Callable, Dict[str, Any]]]) – (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
fetch_k (int) – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
kwargs (Any) –
- Returns
List of Documents most similar to the query.
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector asynchronously.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool.
fetch_k (int) – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
kwargs (Any) –
- Returns
List of Documents most similar to the embedding.
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(query: str, k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to query asynchronously.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool.
fetch_k (int) – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
kwargs (Any) –
- Returns
List of documents most similar to the query text with L2 distance in float. Lower score represents more similarity.
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to query asynchronously.
- Parameters
embedding (List[float]) – Embedding vector to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, Any]]) – Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool.
fetch_k (int) – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
**kwargs (Any) –
kwargs to be passed to similarity search. Can include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of documents most similar to the query text and L2 distance in float for each. Lower score represents more similarity.
- Return type
List[Tuple[Document, float]]
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] [source]¶
Delete by ID. These are the IDs in the vectorstore.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
kwargs (Any) –
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- classmethod deserialize_from_bytes(serialized: bytes, embeddings: Embeddings, **kwargs: Any) FAISS [source]¶
Deserialize FAISS index, docstore, and index_to_docstore_id from bytes.
- Parameters
serialized (bytes) –
embeddings (Embeddings) –
kwargs (Any) –
- Return type
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- classmethod from_embeddings(text_embeddings: Iterable[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[Iterable[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) FAISS [source]¶
Construct FAISS wrapper from raw documents.
- This is a user friendly interface that:
Embeds documents.
Creates an in memory docstore
Initializes the FAISS database
This is intended to be a quick way to get started.
Example
from langchain_community.vectorstores import FAISS from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = zip(texts, text_embeddings) faiss = FAISS.from_embeddings(text_embedding_pairs, embeddings)
- Parameters
text_embeddings (Iterable[Tuple[str, List[float]]]) –
embedding (Embeddings) –
metadatas (Optional[Iterable[dict]]) –
ids (Optional[List[str]]) –
kwargs (Any) –
- Return type
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) FAISS [source]¶
Construct FAISS wrapper from raw documents.
- This is a user friendly interface that:
Embeds documents.
Creates an in memory docstore
Initializes the FAISS database
This is intended to be a quick way to get started.
Example
from langchain_community.vectorstores import FAISS from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings)
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
ids (Optional[List[str]]) –
kwargs (Any) –
- Return type
- classmethod load_local(folder_path: str, embeddings: Embeddings, index_name: str = 'index', *, allow_dangerous_deserialization: bool = False, **kwargs: Any) FAISS [source]¶
Load FAISS index, docstore, and index_to_docstore_id from disk.
- Parameters
folder_path (str) – folder path to load index, docstore, and index_to_docstore_id from.
embeddings (Embeddings) – Embeddings to use when generating queries
index_name (str) – for saving with a specific index file name
allow_dangerous_deserialization (bool) – whether to allow deserialization of the data which involves loading a pickle file. Pickle files can be modified by malicious actors to deliver a malicious payload that results in execution of arbitrary code on your machine.
asynchronous – whether to use async version or not
kwargs (Any) –
- Return type
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Union[Callable, Dict[str, Any]]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch before filtering (if needed) to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Union[Callable, Dict[str, Any]]]) –
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Union[Callable, Dict[str, Any]]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch before filtering to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Union[Callable, Dict[str, Any]]]) –
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_with_score_by_vector(embedding: List[float], *, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Union[Callable, Dict[str, Any]]] = None) List[Tuple[Document, float]] [source]¶
- Return docs and their similarity scores selected using the maximal marginal
relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch before filtering to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Union[Callable, Dict[str, Any]]]) –
- Returns
- List of Documents and similarity scores selected by maximal marginal
relevance and score for each.
- Return type
List[Tuple[Document, float]]
- merge_from(target: FAISS) None [source]¶
Merge another FAISS object with the current one.
Add the target FAISS to the current one.
- Parameters
target (FAISS) – FAISS object you wish to merge into the current one
- Returns
None.
- Return type
None
- save_local(folder_path: str, index_name: str = 'index') None [source]¶
Save FAISS index, docstore, and index_to_docstore_id to disk.
- Parameters
folder_path (str) – folder path to save index, docstore, and index_to_docstore_id to.
index_name (str) – for saving with a specific index file name
- Return type
None
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- serialize_to_bytes() bytes [source]¶
Serialize FAISS index, docstore, and index_to_docstore_id to bytes.
- Return type
bytes
- similarity_search(query: str, k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any) List[Document] [source]¶
Return docs most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Union[Callable, Dict[str, Any]]]) – (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
fetch_k (int) – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
kwargs (Any) –
- Returns
List of Documents most similar to the query.
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool.
fetch_k (int) – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
kwargs (Any) –
- Returns
List of Documents most similar to the embedding.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool.
fetch_k (int) – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
kwargs (Any) –
- Returns
List of documents most similar to the query text with L2 distance in float. Lower score represents more similarity.
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[Union[Callable, Dict[str, Any]]] = None, fetch_k: int = 20, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
embedding (List[float]) – Embedding vector to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Union[Callable, Dict[str, Any]]]) – Filter by metadata. Defaults to None. If a callable, it must take as input the metadata dict of Document and return a bool.
fetch_k (int) – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
**kwargs (Any) –
kwargs to be passed to similarity search. Can include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of documents most similar to the query text and L2 distance in float for each. Lower score represents more similarity.
- Return type
List[Tuple[Document, float]]