langchain_community.vectorstores.documentdb
.DocumentDBVectorSearch¶
- class langchain_community.vectorstores.documentdb.DocumentDBVectorSearch(collection: Collection[DocumentDBDocumentType], embedding: Embeddings, *, index_name: str = 'vectorSearchIndex', text_key: str = 'textContent', embedding_key: str = 'vectorContent')[source]¶
Amazon DocumentDB (with MongoDB compatibility) vector store. Please refer to the official Vector Search documentation for more details: https://docs.aws.amazon.com/documentdb/latest/developerguide/vector-search.html
To use, you should have both: - the
pymongo
python package installed - a connection string and credentials associated with a DocumentDB clusterExample
. code-block:: python
from langchain_community.vectorstores import DocumentDBVectorSearch from langchain_community.embeddings.openai import OpenAIEmbeddings from pymongo import MongoClient
mongo_client = MongoClient(“<YOUR-CONNECTION-STRING>”) collection = mongo_client[“<db_name>”][“<collection_name>”] embeddings = OpenAIEmbeddings() vectorstore = DocumentDBVectorSearch(collection, embeddings)
Constructor for DocumentDBVectorSearch
- Parameters
collection (Collection[DocumentDBDocumentType]) – MongoDB collection to add the texts to.
embedding (Embeddings) – Text embedding model to use.
index_name (str) – Name of the Vector Search index.
text_key (str) – MongoDB field that will contain the text for each document.
embedding_key (str) – MongoDB field that will contain the embedding for each document.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(collection, embedding, *[, ...])Constructor for DocumentDBVectorSearch
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
create_index
([dimensions, similarity, m, ...])Creates an index using the index name specified at
delete
([ids])Delete by vector ID or other criteria.
delete_document_by_id
([document_id])Removes a Specific Document by Id
Deletes the index specified during instance construction if it exists
from_connection_string
(connection_string, ...)Creates an Instance of DocumentDBVectorSearch from a Connection String
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_texts
(texts, embedding[, metadatas, ...])Return VectorStore initialized from texts and embeddings.
Returns the index name
Verifies if the specified index name during instance
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, ef_search])Return docs most similar to query.
similarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(*args, **kwargs)Run similarity search with distance.
- __init__(collection: Collection[DocumentDBDocumentType], embedding: Embeddings, *, index_name: str = 'vectorSearchIndex', text_key: str = 'textContent', embedding_key: str = 'vectorContent')[source]¶
Constructor for DocumentDBVectorSearch
- Parameters
collection (Collection[DocumentDBDocumentType]) – MongoDB collection to add the texts to.
embedding (Embeddings) – Text embedding model to use.
index_name (str) – Name of the Vector Search index.
text_key (str) – MongoDB field that will contain the text for each document.
embedding_key (str) – MongoDB field that will contain the embedding for each document.
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, **kwargs: Any) List [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[Dict[str, Any]]]) – Optional list of metadatas associated with the texts.
kwargs (Any) – vectorstore specific parameters
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- create_index(dimensions: int = 1536, similarity: DocumentDBSimilarityType = DocumentDBSimilarityType.COS, m: int = 16, ef_construction: int = 64) dict[str, Any] [source]¶
- Creates an index using the index name specified at
instance construction
- Parameters
dimensions (int) – Number of dimensions for vector similarity. The maximum number of supported dimensions is 2000
similarity (DocumentDBSimilarityType) – Similarity algorithm to use with the HNSW index.
m (int) – Specifies the max number of connections for an HNSW index. Large impact on memory consumption.
ef_construction (int) –
Specifies the size of the dynamic candidate list for constructing the graph for HNSW index. Higher values lead to more accurate results but slower indexing speed.
- Possible options are:
DocumentDBSimilarityType.COS (cosine distance),
DocumentDBSimilarityType.EUC (Euclidean distance), and
DocumentDBSimilarityType.DOT (dot product).
- Returns
An object describing the created index
- Return type
dict[str, Any]
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] [source]¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- delete_document_by_id(document_id: Optional[str] = None) None [source]¶
Removes a Specific Document by Id
- Parameters
document_id (Optional[str]) – The document identifier
- Return type
None
- delete_index() None [source]¶
Deletes the index specified during instance construction if it exists
- Return type
None
- classmethod from_connection_string(connection_string: str, namespace: str, embedding: Embeddings, **kwargs: Any) DocumentDBVectorSearch [source]¶
Creates an Instance of DocumentDBVectorSearch from a Connection String
- Parameters
connection_string (str) – The DocumentDB cluster endpoint connection string
namespace (str) – The namespace (database.collection)
embedding (Embeddings) – The embedding utility
**kwargs (Any) – Dynamic keyword arguments
- Returns
an instance of the vector store
- Return type
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection: Optional[Collection[DocumentDBDocumentType]] = None, **kwargs: Any) DocumentDBVectorSearch [source]¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
collection (Optional[Collection[DocumentDBDocumentType]]) –
kwargs (Any) –
- Return type
- get_index_name() str [source]¶
Returns the index name
- Returns
Returns the index name
- Return type
str
- index_exists() bool [source]¶
- Verifies if the specified index name during instance
construction exists on the collection
- Returns
- Returns True on success and False if no such index exists
on the collection
- Return type
bool
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, ef_search: int = 40, **kwargs: Any) List[Document] [source]¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
ef_search (int) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]