langchain_community.vectorstores.clarifai.Clarifai¶

class langchain_community.vectorstores.clarifai.Clarifai(user_id: Optional[str] = None, app_id: Optional[str] = None, number_of_docs: Optional[int] = 4, pat: Optional[str] = None, token: Optional[str] = None, api_base: Optional[str] = 'https://api.clarifai.com')[source]¶

Clarifai AI vector store.

To use, you should have the clarifai python SDK package installed.

Example

from langchain_community.vectorstores import Clarifai

clarifai_vector_db = Clarifai(
        user_id=USER_ID,
        app_id=APP_ID,
        number_of_docs=NUMBER_OF_DOCS,
        )

Initialize with Clarifai client.

Parameters
  • user_id (Optional[str], optional) – User ID. Defaults to None.

  • app_id (Optional[str], optional) – App ID. Defaults to None.

  • pat (Optional[str], optional) – Personal access token. Defaults to None.

  • token (Optional[str], optional) – Session token. Defaults to None.

  • number_of_docs (Optional[int], optional) – Number of documents to return

  • None. (during vector search. Defaults to) –

  • api_base (Optional[str], optional) – API base. Defaults to None.

Raises

ValueError – If user ID, app ID or personal access token is not provided.

Attributes

embeddings

Access the query embedding object if available.

Methods

__init__([user_id, app_id, number_of_docs, ...])

Initialize with Clarifai client.

aadd_documents(documents, **kwargs)

Run more documents through the embeddings and add to the vectorstore.

aadd_texts(texts[, metadatas])

Run more texts through the embeddings and add to the vectorstore.

add_documents(documents, **kwargs)

Run more documents through the embeddings and add to the vectorstore.

add_texts(texts[, metadatas, ids])

Add texts to the Clarifai vectorstore.

adelete([ids])

Delete by vector ID or other criteria.

afrom_documents(documents, embedding, **kwargs)

Return VectorStore initialized from documents and embeddings.

afrom_texts(texts, embedding[, metadatas])

Return VectorStore initialized from texts and embeddings.

amax_marginal_relevance_search(query[, k, ...])

Return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

as_retriever(**kwargs)

Return VectorStoreRetriever initialized from this VectorStore.

asearch(query, search_type, **kwargs)

Return docs most similar to query using specified search type.

asimilarity_search(query[, k])

Return docs most similar to query.

asimilarity_search_by_vector(embedding[, k])

Return docs most similar to embedding vector.

asimilarity_search_with_relevance_scores(query)

Return docs and relevance scores in the range [0, 1], asynchronously.

asimilarity_search_with_score(*args, **kwargs)

Run similarity search with distance asynchronously.

delete([ids])

Delete by vector ID or other criteria.

from_documents(documents[, embedding, ...])

Create a Clarifai vectorstore from a list of documents.

from_texts(texts[, embedding, metadatas, ...])

Create a Clarifai vectorstore from a list of texts.

max_marginal_relevance_search(query[, k, ...])

Return docs selected using the maximal marginal relevance.

max_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

search(query, search_type, **kwargs)

Return docs most similar to query using specified search type.

similarity_search(query[, k])

Run similarity search using Clarifai.

similarity_search_by_vector(embedding[, k])

Return docs most similar to embedding vector.

similarity_search_with_relevance_scores(query)

Return docs and relevance scores in the range [0, 1].

similarity_search_with_score(query[, k, filters])

Run similarity search with score using Clarifai.

__init__(user_id: Optional[str] = None, app_id: Optional[str] = None, number_of_docs: Optional[int] = 4, pat: Optional[str] = None, token: Optional[str] = None, api_base: Optional[str] = 'https://api.clarifai.com') None[source]¶

Initialize with Clarifai client.

Parameters
  • user_id (Optional[str], optional) – User ID. Defaults to None.

  • app_id (Optional[str], optional) – App ID. Defaults to None.

  • pat (Optional[str], optional) – Personal access token. Defaults to None.

  • token (Optional[str], optional) – Session token. Defaults to None.

  • number_of_docs (Optional[int], optional) – Number of documents to return

  • None. (during vector search. Defaults to) –

  • api_base (Optional[str], optional) – API base. Defaults to None.

Raises

ValueError – If user ID, app ID or personal access token is not provided.

Return type

None

async aadd_documents(documents: List[Document], **kwargs: Any) List[str]¶

Run more documents through the embeddings and add to the vectorstore.

Parameters
  • (List[Document] (documents) – Documents to add to the vectorstore.

  • documents (List[Document]) –

  • kwargs (Any) –

Returns

List of IDs of the added texts.

Return type

List[str]

async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str]¶

Run more texts through the embeddings and add to the vectorstore.

Parameters
  • texts (Iterable[str]) –

  • metadatas (Optional[List[dict]]) –

  • kwargs (Any) –

Return type

List[str]

add_documents(documents: List[Document], **kwargs: Any) List[str]¶

Run more documents through the embeddings and add to the vectorstore.

Parameters
  • (List[Document] (documents) – Documents to add to the vectorstore.

  • documents (List[Document]) –

  • kwargs (Any) –

Returns

List of IDs of the added texts.

Return type

List[str]

add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str][source]¶

Add texts to the Clarifai vectorstore. This will push the text to a Clarifai application. Application use a base workflow that create and store embedding for each text. Make sure you are using a base workflow that is compatible with text (such as Language Understanding).

Parameters
  • texts (Iterable[str]) – Texts to add to the vectorstore.

  • metadatas (Optional[List[dict]], optional) – Optional list of metadatas.

  • ids (Optional[List[str]], optional) – Optional list of IDs.

  • kwargs (Any) –

Return type

List[str]

async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]¶

Delete by vector ID or other criteria.

Parameters
  • ids (Optional[List[str]]) – List of ids to delete.

  • **kwargs (Any) – Other keyword arguments that subclasses might use.

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST¶

Return VectorStore initialized from documents and embeddings.

Parameters
  • documents (List[Document]) –

  • embedding (Embeddings) –

  • kwargs (Any) –

Return type

VST

async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST¶

Return VectorStore initialized from texts and embeddings.

Parameters
  • texts (List[str]) –

  • embedding (Embeddings) –

  • metadatas (Optional[List[dict]]) –

  • kwargs (Any) –

Return type

VST

Return docs selected using the maximal marginal relevance.

Parameters
  • query (str) –

  • k (int) –

  • fetch_k (int) –

  • lambda_mult (float) –

  • kwargs (Any) –

Return type

List[Document]

async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]¶

Return docs selected using the maximal marginal relevance.

Parameters
  • embedding (List[float]) –

  • k (int) –

  • fetch_k (int) –

  • lambda_mult (float) –

  • kwargs (Any) –

Return type

List[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever¶

Return VectorStoreRetriever initialized from this VectorStore.

Parameters
  • search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.

  • search_kwargs (Optional[Dict]) –

    Keyword arguments to pass to the search function. Can include things like:

    k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold

    for similarity_score_threshold

    fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;

    1 for minimum diversity and 0 for maximum. (Default: 0.5)

    filter: Filter by document metadata

  • kwargs (Any) –

Returns

Retriever class for VectorStore.

Return type

VectorStoreRetriever

Examples:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) List[Document]¶

Return docs most similar to query using specified search type.

Parameters
  • query (str) –

  • search_type (str) –

  • kwargs (Any) –

Return type

List[Document]

Return docs most similar to query.

Parameters
  • query (str) –

  • k (int) –

  • kwargs (Any) –

Return type

List[Document]

async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]¶

Return docs most similar to embedding vector.

Parameters
  • embedding (List[float]) –

  • k (int) –

  • kwargs (Any) –

Return type

List[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]¶

Return docs and relevance scores in the range [0, 1], asynchronously.

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – input text

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs

Returns

List of Tuples of (doc, similarity_score)

Return type

List[Tuple[Document, float]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]¶

Run similarity search with distance asynchronously.

Parameters
  • args (Any) –

  • kwargs (Any) –

Return type

List[Tuple[Document, float]]

delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]¶

Delete by vector ID or other criteria.

Parameters
  • ids (Optional[List[str]]) – List of ids to delete.

  • **kwargs (Any) – Other keyword arguments that subclasses might use.

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, number_of_docs: Optional[int] = None, pat: Optional[str] = None, token: Optional[str] = None, **kwargs: Any) Clarifai[source]¶

Create a Clarifai vectorstore from a list of documents.

Parameters
  • user_id (str) – User ID.

  • app_id (str) – App ID.

  • documents (List[Document]) – List of documents to add.

  • number_of_docs (Optional[int]) – Number of documents

  • None. (to return during vector search. Defaults to) –

  • pat (Optional[str], optional) – Personal access token. Defaults to None.

  • token (Optional[str], optional) – Session token. Defaults to None.

  • **kwargs – Additional keyword arguments to be passed to the Search.

  • embedding (Optional[Embeddings]) –

Returns

Clarifai vectorstore.

Return type

Clarifai

classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, number_of_docs: Optional[int] = None, pat: Optional[str] = None, token: Optional[str] = None, **kwargs: Any) Clarifai[source]¶

Create a Clarifai vectorstore from a list of texts.

Parameters
  • user_id (str) – User ID.

  • app_id (str) – App ID.

  • texts (List[str]) – List of texts to add.

  • number_of_docs (Optional[int]) – Number of documents

  • None. (of metadatas. Defaults to) –

  • pat (Optional[str], optional) – Personal access token.

  • None. –

  • token (Optional[str], optional) – Session token. Defaults to None.

  • metadatas (Optional[List[dict]]) – Optional list

  • None. –

  • **kwargs – Additional keyword arguments to be passed to the Search.

  • embedding (Optional[Embeddings]) –

Returns

Clarifai vectorstore.

Return type

Clarifai

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • kwargs (Any) –

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]¶

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • kwargs (Any) –

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

search(query: str, search_type: str, **kwargs: Any) List[Document]¶

Return docs most similar to query using specified search type.

Parameters
  • query (str) –

  • search_type (str) –

  • kwargs (Any) –

Return type

List[Document]

Run similarity search using Clarifai.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (Optional[int]) – Number of Documents to return.

  • set (If not) –

  • None. (it'll take _number_of_docs. Defaults to) –

  • kwargs (Any) –

Returns

List of Documents most similar to the query and score for each

Return type

List[Document]

similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]¶

Return docs most similar to embedding vector.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • kwargs (Any) –

Returns

List of Documents most similar to the query vector.

Return type

List[Document]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]¶

Return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – input text

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs

Returns

List of Tuples of (doc, similarity_score)

Return type

List[Tuple[Document, float]]

similarity_search_with_score(query: str, k: Optional[int] = None, filters: Optional[dict] = None, **kwargs: Any) List[Tuple[Document, float]][source]¶

Run similarity search with score using Clarifai.

Parameters
  • query (str) – Query text to search for.

  • k (Optional[int]) – Number of results to return. If not set,

  • None. (Defaults to) –

  • filter (Optional[Dict[str, str]]) – Filter by metadata.

  • None. –

  • filters (Optional[dict]) –

  • kwargs (Any) –

Returns

List of documents most similar to the query text.

Return type

List[Document]

Examples using Clarifai¶