langchain_community.vectorstores.chroma
.Chroma¶
- class langchain_community.vectorstores.chroma.Chroma(collection_name: str = 'langchain', embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None, relevance_score_fn: Optional[Callable[[float], float]] = None)[source]¶
ChromaDB vector store.
To use, you should have the
chromadb
python package installed.Example
from langchain_community.vectorstores import Chroma from langchain_community.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings)
Initialize with a Chroma client.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
([collection_name, ...])Initialize with a Chroma client.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_images
(uris[, metadatas, ids])Run more images through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, ids])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
delete
([ids])Delete by vector IDs.
Delete the collection.
encode_image
(uri)Get base64 string from image URI.
from_documents
(documents[, embedding, ids, ...])Create a Chroma vectorstore from a list of documents.
from_texts
(texts[, embedding, metadatas, ...])Create a Chroma vectorstore from a raw documents.
get
([ids, where, limit, offset, ...])Gets the collection.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
persist
()Persist the collection.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, filter])Run similarity search with Chroma.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs most similar to embedding vector and similarity score.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, ...])Run similarity search with Chroma with distance.
update_document
(document_id, document)Update a document in the collection.
update_documents
(ids, documents)Update a document in the collection.
- Parameters
collection_name (str) –
embedding_function (Optional[Embeddings]) –
persist_directory (Optional[str]) –
client_settings (Optional[chromadb.config.Settings]) –
collection_metadata (Optional[Dict]) –
client (Optional[chromadb.Client]) –
relevance_score_fn (Optional[Callable[[float], float]]) –
- __init__(collection_name: str = 'langchain', embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None, relevance_score_fn: Optional[Callable[[float], float]] = None) None [source]¶
Initialize with a Chroma client.
- Parameters
collection_name (str) –
embedding_function (Optional[Embeddings]) –
persist_directory (Optional[str]) –
client_settings (Optional[chromadb.config.Settings]) –
collection_metadata (Optional[Dict]) –
client (Optional[chromadb.Client]) –
relevance_score_fn (Optional[Callable[[float], float]]) –
- Return type
None
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_images(uris: List[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Run more images through the embeddings and add to the vectorstore.
- Parameters
List[str] (uris) – File path to the image.
metadatas (Optional[List[dict]], optional) – Optional list of metadatas.
ids (Optional[List[str]], optional) – Optional list of IDs.
uris (List[str]) –
kwargs (Any) –
- Returns
List of IDs of the added images.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional) – Optional list of metadatas.
ids (Optional[List[str]], optional) – Optional list of IDs.
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- delete(ids: Optional[List[str]] = None, **kwargs: Any) None [source]¶
Delete by vector IDs.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
kwargs (Any) –
- Return type
None
- encode_image(uri: str) str [source]¶
Get base64 string from image URI.
- Parameters
uri (str) –
- Return type
str
- classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = 'langchain', persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, collection_metadata: Optional[Dict] = None, **kwargs: Any) Chroma [source]¶
Create a Chroma vectorstore from a list of documents.
If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory.
- Parameters
collection_name (str) – Name of the collection to create.
persist_directory (Optional[str]) – Directory to persist the collection.
ids (Optional[List[str]]) – List of document IDs. Defaults to None.
documents (List[Document]) – List of documents to add to the vectorstore.
embedding (Optional[Embeddings]) – Embedding function. Defaults to None.
client_settings (Optional[chromadb.config.Settings]) – Chroma client settings
collection_metadata (Optional[Dict]) – Collection configurations. Defaults to None.
client (Optional[chromadb.Client]) –
kwargs (Any) –
- Returns
Chroma vectorstore.
- Return type
- classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = 'langchain', persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, collection_metadata: Optional[Dict] = None, **kwargs: Any) Chroma [source]¶
Create a Chroma vectorstore from a raw documents.
If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory.
- Parameters
texts (List[str]) – List of texts to add to the collection.
collection_name (str) – Name of the collection to create.
persist_directory (Optional[str]) – Directory to persist the collection.
embedding (Optional[Embeddings]) – Embedding function. Defaults to None.
metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None.
ids (Optional[List[str]]) – List of document IDs. Defaults to None.
client_settings (Optional[chromadb.config.Settings]) – Chroma client settings
collection_metadata (Optional[Dict]) – Collection configurations. Defaults to None.
client (Optional[chromadb.Client]) –
kwargs (Any) –
- Returns
Chroma vectorstore.
- Return type
- get(ids: Optional[OneOrMany[ID]] = None, where: Optional[Where] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: Optional[WhereDocument] = None, include: Optional[List[str]] = None) Dict[str, Any] [source]¶
Gets the collection.
- Parameters
ids (Optional[OneOrMany[ID]]) – The ids of the embeddings to get. Optional.
where (Optional[Where]) – A Where type dict used to filter results by. E.g. {“color” : “red”, “price”: 4.20}. Optional.
limit (Optional[int]) – The number of documents to return. Optional.
offset (Optional[int]) – The offset to start returning results from. Useful for paging results with limit. Optional.
where_document (Optional[WhereDocument]) – A WhereDocument type dict used to filter by the documents. E.g. {$contains: “hello”}. Optional.
include (Optional[List[str]]) – A list of what to include in the results. Can contain “embeddings”, “metadatas”, “documents”. Ids are always included. Defaults to [“metadatas”, “documents”]. Optional.
- Return type
Dict[str, Any]
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
where_document (Optional[Dict[str, str]]) –
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
where_document (Optional[Dict[str, str]]) –
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- persist() None [source]¶
Persist the collection.
This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed.
- Return type
None
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Run similarity search with Chroma.
- Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of documents most similar to the query text.
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector. :param embedding: Embedding to look up documents similar to. :type embedding: List[float] :param k: Number of Documents to return. Defaults to 4. :type k: int :param filter: Filter by metadata. Defaults to None. :type filter: Optional[Dict[str, str]]
- Returns
List of Documents most similar to the query vector.
- Parameters
embedding (List[float]) –
k (int) –
filter (Optional[Dict[str, str]]) –
where_document (Optional[Dict[str, str]]) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search_by_vector_with_relevance_scores(embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to embedding vector and similarity score.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
where_document (Optional[Dict[str, str]]) –
kwargs (Any) –
- Returns
List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity.
- Return type
List[Tuple[Document, float]]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Run similarity search with Chroma with distance.
- Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
where_document (Optional[Dict[str, str]]) –
kwargs (Any) –
- Returns
List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity.
- Return type
List[Tuple[Document, float]]