langchain_community.vectorstores.annoy
.Annoy¶
- class langchain_community.vectorstores.annoy.Annoy(embedding_function: Callable, index: Any, metric: str, docstore: Docstore, index_to_docstore_id: Dict[int, str])[source]¶
Annoy vector store.
To use, you should have the
annoy
python package installed.Example
from langchain_community.vectorstores import Annoy db = Annoy(embedding_function, index, docstore, index_to_docstore_id)
Initialize with necessary components.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(embedding_function, index, metric, ...)Initialize with necessary components.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
delete
([ids])Delete by vector ID or other criteria.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_embeddings
(text_embeddings, embedding)Construct Annoy wrapper from embeddings.
from_texts
(texts, embedding[, metadatas, ...])Construct Annoy wrapper from raw documents.
load_local
(folder_path, embeddings, *[, ...])Load Annoy index, docstore, and index_to_docstore_id to disk.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
process_index_results
(idxs, dists)Turns annoy results into a list of documents and scores.
save_local
(folder_path[, prefault])Save Annoy index, docstore, and index_to_docstore_id to disk.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, search_k])Return docs most similar to query.
similarity_search_by_index
(docstore_index[, ...])Return docs most similar to docstore_index.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, ...])Return docs most similar to query.
similarity_search_with_score_by_index
(...[, ...])Return docs most similar to query.
similarity_search_with_score_by_vector
(embedding)Return docs most similar to query.
- Parameters
embedding_function (Callable) –
index (Any) –
metric (str) –
docstore (Docstore) –
index_to_docstore_id (Dict[int, str]) –
- __init__(embedding_function: Callable, index: Any, metric: str, docstore: Docstore, index_to_docstore_id: Dict[int, str])[source]¶
Initialize with necessary components.
- Parameters
embedding_function (Callable) –
index (Any) –
metric (str) –
docstore (Docstore) –
index_to_docstore_id (Dict[int, str]) –
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.
kwargs (Any) – vectorstore specific parameters
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, metric: str = 'angular', trees: int = 100, n_jobs: int = -1, **kwargs: Any) Annoy [source]¶
Construct Annoy wrapper from embeddings.
- Parameters
text_embeddings (List[Tuple[str, List[float]]]) – List of tuples of (text, embedding)
embedding (Embeddings) – Embedding function to use.
metadatas (Optional[List[dict]]) – List of metadata dictionaries to associate with documents.
metric (str) – Metric to use for indexing. Defaults to “angular”.
trees (int) – Number of trees to use for indexing. Defaults to 100.
n_jobs (int) – Number of jobs to use for indexing. Defaults to -1
kwargs (Any) –
- Return type
- This is a user friendly interface that:
Creates an in memory docstore with provided embeddings
Initializes the Annoy database
This is intended to be a quick way to get started.
Example
from langchain_community.vectorstores import Annoy from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) db = Annoy.from_embeddings(text_embedding_pairs, embeddings)
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, metric: str = 'angular', trees: int = 100, n_jobs: int = -1, **kwargs: Any) Annoy [source]¶
Construct Annoy wrapper from raw documents.
- Parameters
texts (List[str]) – List of documents to index.
embedding (Embeddings) – Embedding function to use.
metadatas (Optional[List[dict]]) – List of metadata dictionaries to associate with documents.
metric (str) – Metric to use for indexing. Defaults to “angular”.
trees (int) – Number of trees to use for indexing. Defaults to 100.
n_jobs (int) – Number of jobs to use for indexing. Defaults to -1.
kwargs (Any) –
- Return type
- This is a user friendly interface that:
Embeds documents.
Creates an in memory docstore
Initializes the Annoy database
This is intended to be a quick way to get started.
Example
from langchain_community.vectorstores import Annoy from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() index = Annoy.from_texts(texts, embeddings)
- classmethod load_local(folder_path: str, embeddings: Embeddings, *, allow_dangerous_deserialization: bool = False) Annoy [source]¶
Load Annoy index, docstore, and index_to_docstore_id to disk.
- Parameters
folder_path (str) – folder path to load index, docstore, and index_to_docstore_id from.
embeddings (Embeddings) – Embeddings to use when generating queries.
allow_dangerous_deserialization (bool) – whether to allow deserialization of the data which involves loading a pickle file. Pickle files can be modified by malicious actors to deliver a malicious payload that results in execution of arbitrary code on your machine.
- Return type
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
k (int) – Number of Documents to return. Defaults to 4.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- process_index_results(idxs: List[int], dists: List[float]) List[Tuple[Document, float]] [source]¶
Turns annoy results into a list of documents and scores.
- Parameters
idxs (List[int]) – List of indices of the documents in the index.
dists (List[float]) – List of distances of the documents in the index.
- Returns
List of Documents and scores.
- Return type
List[Tuple[Document, float]]
- save_local(folder_path: str, prefault: bool = False) None [source]¶
Save Annoy index, docstore, and index_to_docstore_id to disk.
- Parameters
folder_path (str) – folder path to save index, docstore, and index_to_docstore_id to.
prefault (bool) – Whether to pre-load the index into memory.
- Return type
None
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, search_k: int = -1, **kwargs: Any) List[Document] [source]¶
Return docs most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
search_k (int) – inspect up to search_k nodes which defaults to n_trees * n if not provided
kwargs (Any) –
- Returns
List of Documents most similar to the query.
- Return type
List[Document]
- similarity_search_by_index(docstore_index: int, k: int = 4, search_k: int = -1, **kwargs: Any) List[Document] [source]¶
Return docs most similar to docstore_index.
- Parameters
docstore_index (int) – Index of document in docstore
k (int) – Number of Documents to return. Defaults to 4.
search_k (int) – inspect up to search_k nodes which defaults to n_trees * n if not provided
kwargs (Any) –
- Returns
List of Documents most similar to the embedding.
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, search_k: int = -1, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
search_k (int) – inspect up to search_k nodes which defaults to n_trees * n if not provided
kwargs (Any) –
- Returns
List of Documents most similar to the embedding.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, search_k: int = -1) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
search_k (int) – inspect up to search_k nodes which defaults to n_trees * n if not provided
- Returns
List of Documents most similar to the query and score for each
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score_by_index(docstore_index: int, k: int = 4, search_k: int = -1) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
search_k (int) – inspect up to search_k nodes which defaults to n_trees * n if not provided
docstore_index (int) –
- Returns
List of Documents most similar to the query and score for each
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, search_k: int = -1) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
search_k (int) – inspect up to search_k nodes which defaults to n_trees * n if not provided
embedding (List[float]) –
- Returns
List of Documents most similar to the query and score for each
- Return type
List[Tuple[Document, float]]