langchain.smith.evaluation.config.RunEvalConfigΒΆ
- class langchain.smith.evaluation.config.RunEvalConfig[source]ΒΆ
- Bases: - BaseModel- Configuration for a run evaluation. - Parameters
- evaluators (List[Union[EvaluatorType, EvalConfig, RunEvaluator, Callable]]) β Configurations for which evaluators to apply to the dataset run. Each can be the string of an - EvaluatorType, such as EvaluatorType.QA, the evaluator type string (βqaβ), or a configuration for a given evaluator (e.g.,- RunEvalConfig.QA).
- custom_evaluators (Optional[List[Union[RunEvaluator, StringEvaluator]]]) β Custom evaluators to apply to the dataset run. 
- reference_key (Optional[str]) β The key in the dataset run to use as the reference string. If not provided, it will be inferred automatically. 
- prediction_key (Optional[str]) β The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
- input_key (Optional[str]) β The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
- eval_llm (Optional[BaseLanguageModel]) β The language model to pass to any evaluators that use a language model. 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param batch_evaluators: Optional[List[Callable[[Sequence[Run], Optional[Sequence[Example]]], Union[EvaluationResult, EvaluationResults, dict]]]] = NoneΒΆ
- Evaluators that run on an aggregate/batch level. - These generate 1 or more metrics that are assigned to the full test run. As a result, they are not associated with individual traces. 
 - param custom_evaluators: Optional[List[Union[Callable[[Run, Optional[Example]], Union[EvaluationResult, EvaluationResults, dict]], RunEvaluator, StringEvaluator]]] = NoneΒΆ
- Custom evaluators to apply to the dataset run. 
 - param eval_llm: Optional[BaseLanguageModel] = NoneΒΆ
- The language model to pass to any evaluators that require one. 
 - param evaluators: List[Union[EvaluatorType, str, EvalConfig, Callable[[Run, Optional[Example]], Union[EvaluationResult, EvaluationResults, dict]], RunEvaluator, StringEvaluator]] [Optional]ΒΆ
- Configurations for which evaluators to apply to the dataset run. Each can be the string of an - EvaluatorType, such as EvaluatorType.QA, the evaluator type string (βqaβ), or a configuration for a given evaluator (e.g.,- RunEvalConfig.QA).
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - class CoTQA[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for a context-based QA evaluator. - Parameters
- prompt (Optional[BasePromptTemplate]) β The prompt template to use for generating the question. 
- llm (Optional[BaseLanguageModel]) β The language model to use for the evaluation chain. 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param evaluator_type: EvaluatorType = EvaluatorType.CONTEXT_QAΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param llm: Optional[BaseLanguageModel] = NoneΒΆ
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param prompt: Optional[BasePromptTemplate] = NoneΒΆ
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class ContextQA[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for a context-based QA evaluator. - Parameters
- prompt (Optional[BasePromptTemplate]) β The prompt template to use for generating the question. 
- llm (Optional[BaseLanguageModel]) β The language model to use for the evaluation chain. 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param evaluator_type: EvaluatorType = EvaluatorType.CONTEXT_QAΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param llm: Optional[BaseLanguageModel] = NoneΒΆ
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param prompt: Optional[BasePromptTemplate] = NoneΒΆ
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class Criteria[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for a reference-free criteria evaluator. - Parameters
- criteria (Optional[CRITERIA_TYPE]) β The criteria to evaluate. 
- llm (Optional[BaseLanguageModel]) β The language model to use for the evaluation chain. 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param criteria: Optional[Union[Mapping[str, str], Criteria, ConstitutionalPrinciple]] = NoneΒΆ
 - param evaluator_type: EvaluatorType = EvaluatorType.CRITERIAΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param llm: Optional[BaseLanguageModel] = NoneΒΆ
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class EmbeddingDistance[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for an embedding distance evaluator. - Parameters
- embeddings (Optional[Embeddings]) β The embeddings to use for computing the distance. 
- distance_metric (Optional[EmbeddingDistanceEnum]) β The distance metric to use for computing the distance. 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param distance_metric: Optional[EmbeddingDistance] = NoneΒΆ
 - param embeddings: Optional[Embeddings] = NoneΒΆ
 - param evaluator_type: EvaluatorType = EvaluatorType.EMBEDDING_DISTANCEΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class ExactMatch[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for an exact match string evaluator. - Parameters
- ignore_case (bool) β Whether to ignore case when comparing strings. 
- ignore_punctuation (bool) β Whether to ignore punctuation when comparing strings. 
- ignore_numbers (bool) β Whether to ignore numbers when comparing strings. 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param evaluator_type: EvaluatorType = EvaluatorType.EXACT_MATCHΒΆ
 - param ignore_case: bool = FalseΒΆ
 - param ignore_numbers: bool = FalseΒΆ
 - param ignore_punctuation: bool = FalseΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class JsonEqualityEvaluator[source]ΒΆ
- Bases: - EvalConfig- Configuration for a json equality evaluator. - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param evaluator_type: EvaluatorType = EvaluatorType.JSON_EQUALITYΒΆ
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class JsonValidity[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for a json validity evaluator. - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param evaluator_type: EvaluatorType = EvaluatorType.JSON_VALIDITYΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class LabeledCriteria[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for a labeled (with references) criteria evaluator. - Parameters
- criteria (Optional[CRITERIA_TYPE]) β The criteria to evaluate. 
- llm (Optional[BaseLanguageModel]) β The language model to use for the evaluation chain. 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param criteria: Optional[Union[Mapping[str, str], Criteria, ConstitutionalPrinciple]] = NoneΒΆ
 - param evaluator_type: EvaluatorType = EvaluatorType.LABELED_CRITERIAΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param llm: Optional[BaseLanguageModel] = NoneΒΆ
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class LabeledScoreString[source]ΒΆ
- Bases: - ScoreString- Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param criteria: Optional[Union[Mapping[str, str], Criteria, ConstitutionalPrinciple]] = NoneΒΆ
 - param evaluator_type: EvaluatorType = EvaluatorType.LABELED_SCORE_STRINGΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param llm: Optional[BaseLanguageModel] = NoneΒΆ
 - param normalize_by: Optional[float] = NoneΒΆ
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param prompt: Optional[BasePromptTemplate] = NoneΒΆ
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class QA[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for a QA evaluator. - Parameters
- prompt (Optional[BasePromptTemplate]) β The prompt template to use for generating the question. 
- llm (Optional[BaseLanguageModel]) β The language model to use for the evaluation chain. 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param evaluator_type: EvaluatorType = EvaluatorType.QAΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param llm: Optional[BaseLanguageModel] = NoneΒΆ
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param prompt: Optional[BasePromptTemplate] = NoneΒΆ
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class RegexMatch[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for a regex match string evaluator. - Parameters
- flags (int) β The flags to pass to the regex. Example: re.IGNORECASE. 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param evaluator_type: EvaluatorType = EvaluatorType.REGEX_MATCHΒΆ
 - param flags: int = 0ΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class ScoreString[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for a score string evaluator. This is like the criteria evaluator but it is configured by default to return a score on the scale from 1-10. - It is recommended to normalize these scores by setting normalize_by to 10. - Parameters
- criteria (Optional[CRITERIA_TYPE]) β The criteria to evaluate. 
- llm (Optional[BaseLanguageModel]) β The language model to use for the evaluation chain. 
- normalize_by (Optional[int] = None) β If you want to normalize the score, the denominator to use. If not provided, the score will be between 1 and 10 (by default). 
- prompt (Optional[BasePromptTemplate]) β 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param criteria: Optional[Union[Mapping[str, str], Criteria, ConstitutionalPrinciple]] = NoneΒΆ
 - param evaluator_type: EvaluatorType = EvaluatorType.SCORE_STRINGΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param llm: Optional[BaseLanguageModel] = NoneΒΆ
 - param normalize_by: Optional[float] = NoneΒΆ
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param prompt: Optional[BasePromptTemplate] = NoneΒΆ
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - class StringDistance[source]ΒΆ
- Bases: - SingleKeyEvalConfig- Configuration for a string distance evaluator. - Parameters
- distance (Optional[StringDistanceEnum]) β The string distance metric to use. 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param distance: Optional[StringDistance] = NoneΒΆ
- The string distance metric to use. damerau_levenshtein: The Damerau-Levenshtein distance. levenshtein: The Levenshtein distance. jaro: The Jaro distance. jaro_winkler: The Jaro-Winkler distance. 
 - param evaluator_type: EvaluatorType = EvaluatorType.STRING_DISTANCEΒΆ
 - param input_key: Optional[str] = NoneΒΆ
- The key from the traced runβs inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. 
 - param normalize_score: bool = TrueΒΆ
- Whether to normalize the distance to between 0 and 1. Applies only to the Levenshtein and Damerau-Levenshtein distances. 
 - param prediction_key: Optional[str] = NoneΒΆ
- The key from the traced runβs outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. 
 - param reference_key: Optional[str] = NoneΒΆ
- The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - get_kwargs() Dict[str, Any]ΒΆ
- Get the keyword arguments for the load_evaluator call. - Returns
- The keyword arguments for the load_evaluator call. 
- Return type
- Dict[str, Any] 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model 
 
 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) β 
- values (Any) β 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) β set to True to make a deep copy of the model 
- self (Model) β 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
 
- Return type
- DictStrAny 
 
 - classmethod from_orm(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β 
- by_alias (bool) β 
- skip_defaults (Optional[bool]) β 
- exclude_unset (bool) β 
- exclude_defaults (bool) β 
- exclude_none (bool) β 
- encoder (Optional[Callable[[Any], Any]]) β 
- models_as_dict (bool) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- path (Union[str, Path]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) ModelΒΆ
- Parameters
- obj (Any) β 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
- Parameters
- b (Union[str, bytes]) β 
- content_type (unicode) β 
- encoding (unicode) β 
- proto (Protocol) β 
- allow_pickle (bool) β 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
- Parameters
- by_alias (bool) β 
- ref_template (unicode) β 
- dumps_kwargs (Any) β 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) β 
- Return type
- None 
 
 - classmethod validate(value: Any) ModelΒΆ
- Parameters
- value (Any) β 
- Return type
- Model