langchain.memory.entity.ConversationEntityMemory

class langchain.memory.entity.ConversationEntityMemory[source]

Bases: BaseChatMemory

Entity extractor & summarizer memory.

Extracts named entities from the recent chat history and generates summaries. With a swappable entity store, persisting entities across conversations. Defaults to an in-memory entity store, and can be swapped out for a Redis, SQLite, or other entity store.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param ai_prefix: str = 'AI'
param chat_history_key: str = 'history'
param chat_memory: BaseChatMessageHistory [Optional]
param entity_cache: List[str] = []
param entity_extraction_prompt: BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], template='You are an AI assistant reading the transcript of a conversation between an AI and a human. Extract all of the proper nouns from the last line of conversation. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nThe conversation history is provided just in case of a coreference (e.g. "What do you know about him" where "him" is defined in a previous line) -- ignore items mentioned there that are not in the last line.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return (e.g. the user is just issuing a greeting or having a simple conversation).\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I\'m working with Person #2.\nOutput: Langchain, Person #2\nEND OF EXAMPLE\n\nConversation history (for reference only):\n{history}\nLast line of conversation (for extraction):\nHuman: {input}\n\nOutput:')
param entity_store: BaseEntityStore [Optional]
param entity_summarization_prompt: BasePromptTemplate = PromptTemplate(input_variables=['entity', 'history', 'input', 'summary'], template='You are an AI assistant helping a human keep track of facts about relevant people, places, and concepts in their life. Update the summary of the provided entity in the "Entity" section based on the last line of your conversation with the human. If you are writing the summary for the first time, return a single sentence.\nThe update should only include facts that are relayed in the last line of conversation about the provided entity, and should only contain facts about the provided entity.\n\nIf there is no new information about the provided entity or the information is not worth noting (not an important or relevant fact to remember long-term), return the existing summary unchanged.\n\nFull conversation history (for context):\n{history}\n\nEntity to summarize:\n{entity}\n\nExisting summary of {entity}:\n{summary}\n\nLast line of conversation:\nHuman: {input}\nUpdated summary:')
param human_prefix: str = 'Human'
param input_key: Optional[str] = None
param k: int = 3
param llm: BaseLanguageModel [Required]
param output_key: Optional[str] = None
param return_messages: bool = False
async aclear() None

Clear memory contents.

Return type

None

async aload_memory_variables(inputs: Dict[str, Any]) Dict[str, Any]

Return key-value pairs given the text input to the chain.

Parameters

inputs (Dict[str, Any]) –

Return type

Dict[str, Any]

async asave_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None

Save context from this conversation to buffer.

Parameters
  • inputs (Dict[str, Any]) –

  • outputs (Dict[str, str]) –

Return type

None

clear() None[source]

Clear memory contents.

Return type

None

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Parameters
  • _fields_set (Optional[SetStr]) –

  • values (Any) –

Return type

Model

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include

  • update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep (bool) – set to True to make a deep copy of the model

  • self (Model) –

Returns

new model instance

Return type

Model

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • by_alias (bool) –

  • skip_defaults (Optional[bool]) –

  • exclude_unset (bool) –

  • exclude_defaults (bool) –

  • exclude_none (bool) –

Return type

DictStrAny

classmethod from_orm(obj: Any) Model
Parameters

obj (Any) –

Return type

Model

classmethod get_lc_namespace() List[str]

Get the namespace of the langchain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”]

Return type

List[str]

classmethod is_lc_serializable() bool

Is this class serializable?

Return type

bool

json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • by_alias (bool) –

  • skip_defaults (Optional[bool]) –

  • exclude_unset (bool) –

  • exclude_defaults (bool) –

  • exclude_none (bool) –

  • encoder (Optional[Callable[[Any], Any]]) –

  • models_as_dict (bool) –

  • dumps_kwargs (Any) –

Return type

unicode

classmethod lc_id() List[str]

A unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

Return type

List[str]

load_memory_variables(inputs: Dict[str, Any]) Dict[str, Any][source]

Returns chat history and all generated entities with summaries if available, and updates or clears the recent entity cache.

New entity name can be found when calling this method, before the entity summaries are generated, so the entity cache values may be empty if no entity descriptions are generated yet.

Parameters

inputs (Dict[str, Any]) –

Return type

Dict[str, Any]

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
Parameters
  • path (Union[str, Path]) –

  • content_type (unicode) –

  • encoding (unicode) –

  • proto (Protocol) –

  • allow_pickle (bool) –

Return type

Model

classmethod parse_obj(obj: Any) Model
Parameters

obj (Any) –

Return type

Model

classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
Parameters
  • b (Union[str, bytes]) –

  • content_type (unicode) –

  • encoding (unicode) –

  • proto (Protocol) –

  • allow_pickle (bool) –

Return type

Model

save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None[source]

Save context from this conversation history to the entity store.

Generates a summary for each entity in the entity cache by prompting the model, and saves these summaries to the entity store.

Parameters
  • inputs (Dict[str, Any]) –

  • outputs (Dict[str, str]) –

Return type

None

classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny
Parameters
  • by_alias (bool) –

  • ref_template (unicode) –

Return type

DictStrAny

classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode
Parameters
  • by_alias (bool) –

  • ref_template (unicode) –

  • dumps_kwargs (Any) –

Return type

unicode

to_json() Union[SerializedConstructor, SerializedNotImplemented]
Return type

Union[SerializedConstructor, SerializedNotImplemented]

to_json_not_implemented() SerializedNotImplemented
Return type

SerializedNotImplemented

classmethod update_forward_refs(**localns: Any) None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

Parameters

localns (Any) –

Return type

None

classmethod validate(value: Any) Model
Parameters

value (Any) –

Return type

Model

property buffer: List[BaseMessage]

Access chat memory messages.

property lc_attributes: Dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

property lc_secrets: Dict[str, str]

A map of constructor argument names to secret ids.

For example,

{“openai_api_key”: “OPENAI_API_KEY”}

Examples using ConversationEntityMemory