langchain_community.llms.vllm.VLLM

class langchain_community.llms.vllm.VLLM[source]

Bases: BaseLLM

VLLM language model.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param best_of: Optional[int] = None

Number of output sequences that are generated from the prompt.

param cache: Optional[bool] = None

Whether to cache the response.

param callback_manager: Optional[BaseCallbackManager] = None

[DEPRECATED]

param callbacks: Callbacks = None

Callbacks to add to the run trace.

param download_dir: Optional[str] = None

Directory to download and load the weights. (Default to the default cache dir of huggingface)

param dtype: str = 'auto'

The data type for the model weights and activations.

param frequency_penalty: float = 0.0

Float that penalizes new tokens based on their frequency in the generated text so far

param ignore_eos: bool = False

Whether to ignore the EOS token and continue generating tokens after the EOS token is generated.

param logprobs: Optional[int] = None

Number of log probabilities to return per output token.

param max_new_tokens: int = 512

Maximum number of tokens to generate per output sequence.

param metadata: Optional[Dict[str, Any]] = None

Metadata to add to the run trace.

param model: str = ''

The name or path of a HuggingFace Transformers model.

param n: int = 1

Number of output sequences to return for the given prompt.

param presence_penalty: float = 0.0

Float that penalizes new tokens based on whether they appear in the generated text so far

param stop: Optional[List[str]] = None

List of strings that stop the generation when they are generated.

param tags: Optional[List[str]] = None

Tags to add to the run trace.

param temperature: float = 1.0

Float that controls the randomness of the sampling.

param tensor_parallel_size: Optional[int] = 1

The number of GPUs to use for distributed execution with tensor parallelism.

param top_k: int = -1

Integer that controls the number of top tokens to consider.

param top_p: float = 1.0

Float that controls the cumulative probability of the top tokens to consider.

param trust_remote_code: Optional[bool] = False

Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.

Whether to use beam search instead of sampling.

param verbose: bool [Optional]

Whether to print out response text.

param vllm_kwargs: Dict[str, Any] [Optional]

Holds any model parameters valid for vllm.LLM call not explicitly specified.

__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) str

[Deprecated] Check Cache and run the LLM on the given prompt and input.

Notes

Deprecated since version 0.1.7: Use invoke instead.

Parameters
  • prompt (str) –

  • stop (Optional[List[str]]) –

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –

  • tags (Optional[List[str]]) –

  • metadata (Optional[Dict[str, Any]]) –

  • kwargs (Any) –

Return type

str

async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.

Parameters
Return type

List[str]

async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) LLMResult

Asynchronously pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:
  1. take advantage of batched calls,

  2. need more output from the model than just the top generated value,

  3. are building chains that are agnostic to the underlying language model

    type (e.g., pure text completion models vs chat models).

Parameters
  • prompts (List[str]) – List of string prompts.

  • stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

  • **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

  • tags (Optional[Union[List[str], List[List[str]]]]) –

  • metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) –

  • run_name (Optional[Union[str, List[str]]]) –

  • **kwargs

Returns

An LLMResult, which contains a list of candidate Generations for each input

prompt and additional model provider-specific output.

Return type

LLMResult

async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult

Asynchronously pass a sequence of prompts and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:
  1. take advantage of batched calls,

  2. need more output from the model than just the top generated value,

  3. are building chains that are agnostic to the underlying language model

    type (e.g., pure text completion models vs chat models).

Parameters
  • prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).

  • stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

  • **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

Returns

An LLMResult, which contains a list of candidate Generations for each input

prompt and additional model provider-specific output.

Return type

LLMResult

async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str

Default implementation of ainvoke, calls invoke from a thread.

The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke.

Subclasses should override this method if they can run asynchronously.

Parameters
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) –

  • config (Optional[RunnableConfig]) –

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

Return type

str

async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

[Deprecated]

Notes

Deprecated since version 0.1.7: Use ainvoke instead.

Parameters
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

Return type

str

async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

[Deprecated]

Notes

Deprecated since version 0.1.7: Use ainvoke instead.

Parameters
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

Return type

BaseMessage

assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) RunnableSerializable[Any, Any]

Assigns new fields to the dict output of this runnable. Returns a new runnable.

Parameters

kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –

Return type

RunnableSerializable[Any, Any]

async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[str]

Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.

Parameters
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) –

  • config (Optional[RunnableConfig]) –

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

Return type

AsyncIterator[str]

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[StreamEvent]

[Beta] Generate a stream of events.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: str - Event names are of the

    format: on_[runnable_type]_(start|stream|end).

  • name: str - The name of the runnable that generated the event.

  • run_id: str - randomly generated ID associated with the given execution of

    the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.

  • tags: Optional[List[str]] - The tags of the runnable that generated

    the event.

  • metadata: Optional[Dict[str, Any]] - The metadata of the runnable

    that generated the event.

  • data: Dict[str, Any]

Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

event

name

chunk

input

output

on_chat_model_start

[model name]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[model name]

AIMessageChunk(content=”hello”)

on_chat_model_end

[model name]

{“messages”: [[SystemMessage, HumanMessage]]}

{“generations”: […], “llm_output”: None, …}

on_llm_start

[model name]

{‘input’: ‘hello’}

on_llm_stream

[model name]

‘Hello’

on_llm_end

[model name]

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_stream

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[retriever name]

{“query”: “hello”}

on_retriever_chunk

[retriever name]

{documents: […]}

on_retriever_end

[retriever name]

{“query”: “hello”}

{documents: […]}

on_prompt_start

[template_name]

{“question”: “hello”}

on_prompt_end

[template_name]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

Here are declarations associated with the events shown above:

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

Example:

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v1")
]

# will produce the following events (run_id has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]
Parameters
  • input (Any) – The input to the runnable.

  • config (Optional[RunnableConfig]) – The config to use for the runnable.

  • version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available. No default will be assigned until the API is stabilized.

  • include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.

  • include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.

  • include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.

  • exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.

  • exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.

  • exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.

  • kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

Returns

An async stream of StreamEvents.

Return type

AsyncIterator[StreamEvent]

Notes

async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]

Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The jsonpatch ops can be applied in order to construct state.

Parameters
  • input (Any) – The input to the runnable.

  • config (Optional[RunnableConfig]) – The config to use for the runnable.

  • diff (bool) – Whether to yield diffs between each step, or the current state.

  • with_streamed_output_list (bool) – Whether to yield the streamed_output list.

  • include_names (Optional[Sequence[str]]) – Only include logs with these names.

  • include_types (Optional[Sequence[str]]) – Only include logs with these types.

  • include_tags (Optional[Sequence[str]]) – Only include logs with these tags.

  • exclude_names (Optional[Sequence[str]]) – Exclude logs with these names.

  • exclude_types (Optional[Sequence[str]]) – Exclude logs with these types.

  • exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.

  • kwargs (Any) –

Return type

Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]

async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output]

Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.

Parameters
  • input (AsyncIterator[Input]) –

  • config (Optional[RunnableConfig]) –

  • kwargs (Optional[Any]) –

Return type

AsyncIterator[Output]

batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.

Parameters
Return type

List[str]

bind(**kwargs: Any) Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Parameters

kwargs (Any) –

Return type

Runnable[Input, Output]

config_schema(*, include: Optional[Sequence[str]] = None) Type[BaseModel]

The type of config this runnable accepts specified as a pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

Parameters

include (Optional[Sequence[str]]) – A list of fields to include in the config schema.

Returns

A pydantic model that can be used to validate config.

Return type

Type[BaseModel]

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]
Parameters
Return type

RunnableSerializable[Input, Output]

configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]
Parameters

kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) –

Return type

RunnableSerializable[Input, Output]

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Parameters
  • _fields_set (Optional[SetStr]) –

  • values (Any) –

Return type

Model

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include

  • update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep (bool) – set to True to make a deep copy of the model

  • self (Model) –

Returns

new model instance

Return type

Model

dict(**kwargs: Any) Dict

Return a dictionary of the LLM.

Parameters

kwargs (Any) –

Return type

Dict

classmethod from_orm(obj: Any) Model
Parameters

obj (Any) –

Return type

Model

generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) LLMResult

Pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:
  1. take advantage of batched calls,

  2. need more output from the model than just the top generated value,

  3. are building chains that are agnostic to the underlying language model

    type (e.g., pure text completion models vs chat models).

Parameters
  • prompts (List[str]) – List of string prompts.

  • stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

  • **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

  • tags (Optional[Union[List[str], List[List[str]]]]) –

  • metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) –

  • run_name (Optional[Union[str, List[str]]]) –

  • **kwargs

Returns

An LLMResult, which contains a list of candidate Generations for each input

prompt and additional model provider-specific output.

Return type

LLMResult

generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult

Pass a sequence of prompts to the model and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:
  1. take advantage of batched calls,

  2. need more output from the model than just the top generated value,

  3. are building chains that are agnostic to the underlying language model

    type (e.g., pure text completion models vs chat models).

Parameters
  • prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).

  • stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

  • **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

Returns

An LLMResult, which contains a list of candidate Generations for each input

prompt and additional model provider-specific output.

Return type

LLMResult

get_graph(config: Optional[RunnableConfig] = None) Graph

Return a graph representation of this runnable.

Parameters

config (Optional[RunnableConfig]) –

Return type

Graph

get_input_schema(config: Optional[RunnableConfig] = None) Type[BaseModel]

Get a pydantic model that can be used to validate input to the runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with.

This method allows to get an input schema for a specific configuration.

Parameters

config (Optional[RunnableConfig]) – A config to use when generating the schema.

Returns

A pydantic model that can be used to validate input.

Return type

Type[BaseModel]

classmethod get_lc_namespace() List[str]

Get the namespace of the langchain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”]

Return type

List[str]

get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) str

Get the name of the runnable.

Parameters
  • suffix (Optional[str]) –

  • name (Optional[str]) –

Return type

str

get_num_tokens(text: str) int

Get the number of tokens present in the text.

Useful for checking if an input will fit in a model’s context window.

Parameters

text (str) – The string input to tokenize.

Returns

The integer number of tokens in the text.

Return type

int

get_num_tokens_from_messages(messages: List[BaseMessage]) int

Get the number of tokens in the messages.

Useful for checking if an input will fit in a model’s context window.

Parameters

messages (List[BaseMessage]) – The message inputs to tokenize.

Returns

The sum of the number of tokens across the messages.

Return type

int

get_output_schema(config: Optional[RunnableConfig] = None) Type[BaseModel]

Get a pydantic model that can be used to validate output to the runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with.

This method allows to get an output schema for a specific configuration.

Parameters

config (Optional[RunnableConfig]) – A config to use when generating the schema.

Returns

A pydantic model that can be used to validate output.

Return type

Type[BaseModel]

get_prompts(config: Optional[RunnableConfig] = None) List[BasePromptTemplate]
Parameters

config (Optional[RunnableConfig]) –

Return type

List[BasePromptTemplate]

get_token_ids(text: str) List[int]

Return the ordered ids of the tokens in a text.

Parameters

text (str) – The string input to tokenize.

Returns

A list of ids corresponding to the tokens in the text, in order they occur

in the text.

Return type

List[int]

invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str

Transform a single input into an output. Override to implement.

Parameters
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable.

  • config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

Returns

The output of the runnable.

Return type

str

classmethod is_lc_serializable() bool

Is this class serializable?

Return type

bool

json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • by_alias (bool) –

  • skip_defaults (Optional[bool]) –

  • exclude_unset (bool) –

  • exclude_defaults (bool) –

  • exclude_none (bool) –

  • encoder (Optional[Callable[[Any], Any]]) –

  • models_as_dict (bool) –

  • dumps_kwargs (Any) –

Return type

unicode

classmethod lc_id() List[str]

A unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

Return type

List[str]

map() Runnable[List[Input], List[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.

Return type

Runnable[List[Input], List[Output]]

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
Parameters
  • path (Union[str, Path]) –

  • content_type (unicode) –

  • encoding (unicode) –

  • proto (Protocol) –

  • allow_pickle (bool) –

Return type

Model

classmethod parse_obj(obj: Any) Model
Parameters

obj (Any) –

Return type

Model

classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
Parameters
  • b (Union[str, bytes]) –

  • content_type (unicode) –

  • encoding (unicode) –

  • proto (Protocol) –

  • allow_pickle (bool) –

Return type

Model

pick(keys: Union[str, List[str]]) RunnableSerializable[Any, Any]

Pick keys from the dict output of this runnable. Returns a new runnable.

Parameters

keys (Union[str, List[str]]) –

Return type

RunnableSerializable[Any, Any]

pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) RunnableSerializable[Input, Other]

Compose this runnable with another object to create a RunnableSequence.

Parameters
  • others (Union[Runnable[Any, Other], Callable[[Any], Other]]) –

  • name (Optional[str]) –

Return type

RunnableSerializable[Input, Other]

predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

[Deprecated]

Notes

Deprecated since version 0.1.7: Use invoke instead.

Parameters
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

Return type

str

predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

[Deprecated]

Notes

Deprecated since version 0.1.7: Use invoke instead.

Parameters
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

Return type

BaseMessage

save(file_path: Union[Path, str]) None

Save the LLM.

Parameters

file_path (Union[Path, str]) – Path to file to save the LLM to.

Return type

None

Example: .. code-block:: python

llm.save(file_path=”path/llm.yaml”)

classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny
Parameters
  • by_alias (bool) –

  • ref_template (unicode) –

Return type

DictStrAny

classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode
Parameters
  • by_alias (bool) –

  • ref_template (unicode) –

  • dumps_kwargs (Any) –

Return type

unicode

stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[str]

Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.

Parameters
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) –

  • config (Optional[RunnableConfig]) –

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

Return type

Iterator[str]

to_json() Union[SerializedConstructor, SerializedNotImplemented]

Serialize the runnable to JSON.

Return type

Union[SerializedConstructor, SerializedNotImplemented]

to_json_not_implemented() SerializedNotImplemented
Return type

SerializedNotImplemented

transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output]

Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

Parameters
  • input (Iterator[Input]) –

  • config (Optional[RunnableConfig]) –

  • kwargs (Optional[Any]) –

Return type

Iterator[Output]

classmethod update_forward_refs(**localns: Any) None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

Parameters

localns (Any) –

Return type

None

classmethod validate(value: Any) Model
Parameters

value (Any) –

Return type

Model

with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

Parameters
Return type

Runnable[Input, Output]

with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) RunnableWithFallbacksT[Input, Output]

Add fallbacks to a runnable, returning a new Runnable.

Parameters
  • fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails.

  • exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle.

  • exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input.

Returns

A new Runnable that will try the original runnable, and then each fallback in order, upon failures.

Return type

RunnableWithFallbacksT[Input, Output]

with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters
  • on_start (Optional[Listener]) –

  • on_end (Optional[Listener]) –

  • on_error (Optional[Listener]) –

Return type

Runnable[Input, Output]

with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output]

Create a new Runnable that retries the original runnable on exceptions.

Parameters
  • retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on

  • wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries

  • stop_after_attempt (int) – The maximum number of attempts to make before giving up

Returns

A new Runnable that retries the original runnable on exceptions.

Return type

Runnable[Input, Output]

with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

[Beta] Implement this if there is a way of steering the model to generate responses that match a given schema.

Notes

Parameters
  • schema (Union[Dict, Type[BaseModel]]) –

  • kwargs (Any) –

Return type

Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

Parameters
  • input_type (Optional[Type[Input]]) –

  • output_type (Optional[Type[Output]]) –

Return type

Runnable[Input, Output]

property InputType: TypeAlias

Get the input type for this runnable.

property OutputType: Type[str]

Get the input type for this runnable.

property config_specs: List[ConfigurableFieldSpec]

List configurable fields for this runnable.

property input_schema: Type[BaseModel]

The type of input this runnable accepts specified as a pydantic model.

property lc_attributes: Dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

property lc_secrets: Dict[str, str]

A map of constructor argument names to secret ids.

For example,

{“openai_api_key”: “OPENAI_API_KEY”}

name: Optional[str] = None

The name of the runnable. Used for debugging and tracing.

property output_schema: Type[BaseModel]

The type of output this runnable produces specified as a pydantic model.

Examples using VLLM