langchain.evaluation.parsing.base.JsonValidityEvaluator¶

class langchain.evaluation.parsing.base.JsonValidityEvaluator(**kwargs: Any)[source]¶

Evaluates whether the prediction is valid JSON.

This evaluator checks if the prediction is a valid JSON string. It does not

require any input or reference.

Parameters

kwargs (Any) –

requires_input¶

Whether this evaluator requires an input string. Always False.

Type

bool

requires_reference¶

Whether this evaluator requires a reference string. Always False.

Type

bool

evaluation_name¶

The name of the evaluation metric. Always “json”.

Type

str

Examples

>>> evaluator = JsonValidityEvaluator()
>>> prediction = '{"name": "John", "age": 30, "city": "New York"}'
>>> evaluator.evaluate(prediction)
{'score': 1}
>>> prediction = '{"name": "John", "age": 30, "city": "New York",}'
>>> evaluator.evaluate(prediction)
{'score': 0, 'reasoning': 'Expecting property name enclosed in double quotes'}

Attributes

evaluation_name

The name of the evaluation.

requires_input

Whether this evaluator requires an input string.

requires_reference

Whether this evaluator requires a reference label.

Methods

__init__(**kwargs)

aevaluate_strings(*, prediction[, ...])

Asynchronously evaluate Chain or LLM output, based on optional input and label.

evaluate_strings(*, prediction[, reference, ...])

Evaluate Chain or LLM output, based on optional input and label.

__init__(**kwargs: Any) None[source]¶
Parameters

kwargs (Any) –

Return type

None

async aevaluate_strings(*, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, **kwargs: Any) dict¶

Asynchronously evaluate Chain or LLM output, based on optional input and label.

Parameters
  • prediction (str) – The LLM or chain prediction to evaluate.

  • reference (Optional[str], optional) – The reference label to evaluate against.

  • input (Optional[str], optional) – The input to consider during evaluation.

  • **kwargs – Additional keyword arguments, including callbacks, tags, etc.

Returns

The evaluation results containing the score or value.

Return type

dict

evaluate_strings(*, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, **kwargs: Any) dict¶

Evaluate Chain or LLM output, based on optional input and label.

Parameters
  • prediction (str) – The LLM or chain prediction to evaluate.

  • reference (Optional[str], optional) – The reference label to evaluate against.

  • input (Optional[str], optional) – The input to consider during evaluation.

  • **kwargs – Additional keyword arguments, including callbacks, tags, etc.

Returns

The evaluation results containing the score or value.

Return type

dict