langchain_community.embeddings.deepinfra
.DeepInfraEmbeddings¶
- class langchain_community.embeddings.deepinfra.DeepInfraEmbeddings[source]¶
Bases:
BaseModel
,Embeddings
Deep Infra’s embedding inference service.
To use, you should have the environment variable
DEEPINFRA_API_TOKEN
set with your API token, or pass it as a named parameter to the constructor. There are multiple embeddings models available, see https://deepinfra.com/models?type=embeddings.Example
from langchain_community.embeddings import DeepInfraEmbeddings deepinfra_emb = DeepInfraEmbeddings( model_id="sentence-transformers/clip-ViT-B-32", deepinfra_api_token="my-api-key" ) r1 = deepinfra_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = deepinfra_emb.embed_query( "What is the second letter of Greek alphabet" )
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param deepinfra_api_token: Optional[str] = None¶
- param embed_instruction: str = 'passage: '¶
Instruction used to embed documents.
- param model_id: str = 'sentence-transformers/clip-ViT-B-32'¶
Embeddings model to use.
- param model_kwargs: Optional[dict] = None¶
Other model keyword args
- param normalize: bool = False¶
whether to normalize the computed embeddings
- param query_instruction: str = 'query: '¶
Instruction used to embed the query.
- async aembed_documents(texts: List[str]) List[List[float]] ¶
Asynchronous Embed search docs.
- Parameters
texts (List[str]) –
- Return type
List[List[float]]
- async aembed_query(text: str) List[float] ¶
Asynchronous Embed query text.
- Parameters
text (str) –
- Return type
List[float]
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
- Return type
Model
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
- Returns
new model instance
- Return type
Model
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
- Return type
DictStrAny
- embed_documents(texts: List[str]) List[List[float]] [source]¶
Embed documents using a Deep Infra deployed embedding model.
- Parameters
texts (List[str]) – The list of texts to embed.
- Returns
List of embeddings, one for each text.
- Return type
List[List[float]]
- embed_query(text: str) List[float] [source]¶
Embed a query using a Deep Infra deployed embedding model.
- Parameters
text (str) – The text to embed.
- Returns
Embeddings for the text.
- Return type
List[float]
- classmethod from_orm(obj: Any) Model ¶
- Parameters
obj (Any) –
- Return type
Model
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
- Return type
unicode
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
- Return type
Model
- classmethod parse_obj(obj: Any) Model ¶
- Parameters
obj (Any) –
- Return type
Model
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
- Return type
Model
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- Parameters
by_alias (bool) –
ref_template (unicode) –
- Return type
DictStrAny
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
- Return type
unicode
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- Parameters
localns (Any) –
- Return type
None
- classmethod validate(value: Any) Model ¶
- Parameters
value (Any) –
- Return type
Model