langchain_community.document_loaders.parsers.docai
.DocAIParser¶
- class langchain_community.document_loaders.parsers.docai.DocAIParser(*, client: Optional[DocumentProcessorServiceClient] = None, location: Optional[str] = None, gcs_output_path: Optional[str] = None, processor_name: Optional[str] = None)[source]¶
Google Cloud Document AI parser.
For a detailed explanation of Document AI, refer to the product documentation. https://cloud.google.com/document-ai/docs/overview
Initializes the parser.
- Parameters
client (Optional[DocumentProcessorServiceClient]) – a DocumentProcessorServiceClient to use
location (Optional[str]) – a Google Cloud location where a Document AI processor is located
gcs_output_path (Optional[str]) – a path on Google Cloud Storage to store parsing results
processor_name (Optional[str]) – full resource name of a Document AI processor or processor version
- You should provide either a client or location (and then a client
would be instantiated).
Methods
__init__
(*[, client, location, ...])Initializes the parser.
batch_parse
(blobs[, gcs_output_path, ...])Parses a list of blobs lazily.
docai_parse
(blobs, *[, gcs_output_path, ...])Runs Google Document AI PDF Batch Processing on a list of blobs.
get_results
(operations)is_running
(operations)lazy_parse
(blob)Parses a blob lazily.
online_process
(blob[, ...])Parses a blob lazily using online processing.
operations_from_names
(operation_names)Initializes Long-Running Operations from their names.
parse
(blob)Eagerly parse the blob into a document or documents.
parse_from_results
(results)- __init__(*, client: Optional[DocumentProcessorServiceClient] = None, location: Optional[str] = None, gcs_output_path: Optional[str] = None, processor_name: Optional[str] = None)[source]¶
Initializes the parser.
- Parameters
client (Optional[DocumentProcessorServiceClient]) – a DocumentProcessorServiceClient to use
location (Optional[str]) – a Google Cloud location where a Document AI processor is located
gcs_output_path (Optional[str]) – a path on Google Cloud Storage to store parsing results
processor_name (Optional[str]) – full resource name of a Document AI processor or processor version
- You should provide either a client or location (and then a client
would be instantiated).
- batch_parse(blobs: Sequence[Blob], gcs_output_path: Optional[str] = None, timeout_sec: int = 3600, check_in_interval_sec: int = 60) Iterator[Document] [source]¶
Parses a list of blobs lazily.
- Parameters
blobs (Sequence[Blob]) – a list of blobs to parse.
gcs_output_path (Optional[str]) – a path on Google Cloud Storage to store parsing results.
timeout_sec (int) – a timeout to wait for Document AI to complete, in seconds.
check_in_interval_sec (int) – an interval to wait until next check whether parsing operations have been completed, in seconds
- Return type
Iterator[Document]
- This is a long-running operation. A recommended way is to decouple
parsing from creating LangChain Documents: >>> operations = parser.docai_parse(blobs, gcs_path) >>> parser.is_running(operations) You can get operations names and save them: >>> names = [op.operation.name for op in operations] And when all operations are finished, you can use their results: >>> operations = parser.operations_from_names(operation_names) >>> results = parser.get_results(operations) >>> docs = parser.parse_from_results(results)
- docai_parse(blobs: Sequence[Blob], *, gcs_output_path: Optional[str] = None, processor_name: Optional[str] = None, batch_size: int = 1000, enable_native_pdf_parsing: bool = True, field_mask: Optional[str] = None) List[Operation] [source]¶
Runs Google Document AI PDF Batch Processing on a list of blobs.
- Parameters
blobs (Sequence[Blob]) – a list of blobs to be parsed
gcs_output_path (Optional[str]) – a path (folder) on GCS to store results
processor_name (Optional[str]) – name of a Document AI processor.
batch_size (int) – amount of documents per batch
enable_native_pdf_parsing (bool) – a config option for the parser
field_mask (Optional[str]) – a comma-separated list of which fields to include in the Document AI response. suggested: “text,pages.pageNumber,pages.layout”
- Return type
List[Operation]
Document AI has a 1000 file limit per batch, so batches larger than that need to be split into multiple requests. Batch processing is an async long-running operation and results are stored in a output GCS bucket.
- get_results(operations: List[Operation]) List[DocAIParsingResults] [source]¶
- Parameters
operations (List[Operation]) –
- Return type
List[DocAIParsingResults]
- is_running(operations: List[Operation]) bool [source]¶
- Parameters
operations (List[Operation]) –
- Return type
bool
- lazy_parse(blob: Blob) Iterator[Document] [source]¶
Parses a blob lazily.
- This is a long-running operation. A recommended way is to batch
documents together and use the batch_parse() method.
- online_process(blob: Blob, enable_native_pdf_parsing: bool = True, field_mask: Optional[str] = None, page_range: Optional[List[int]] = None) Iterator[Document] [source]¶
Parses a blob lazily using online processing.
- Parameters
blob (Blob) – a blob to parse.
enable_native_pdf_parsing (bool) – enable pdf embedded text extraction
field_mask (Optional[str]) – a comma-separated list of which fields to include in the Document AI response. suggested: “text,pages.pageNumber,pages.layout”
page_range (Optional[List[int]]) – list of page numbers to parse. If None, entire document will be parsed.
- Return type
Iterator[Document]
- operations_from_names(operation_names: List[str]) List[Operation] [source]¶
Initializes Long-Running Operations from their names.
- Parameters
operation_names (List[str]) –
- Return type
List[Operation]
- parse(blob: Blob) List[Document] ¶
Eagerly parse the blob into a document or documents.
This is a convenience method for interactive development environment.
Production applications should favor the lazy_parse method instead.
Subclasses should generally not over-ride this parse method.
- parse_from_results(results: List[DocAIParsingResults]) Iterator[Document] [source]¶
- Parameters
results (List[DocAIParsingResults]) –
- Return type
Iterator[Document]