langchain_text_splitters.character.CharacterTextSplitter¶

class langchain_text_splitters.character.CharacterTextSplitter(separator: str = '\n\n', is_separator_regex: bool = False, **kwargs: Any)[source]¶

Splitting text that looks at characters.

Create a new TextSplitter.

Methods

__init__([separator, is_separator_regex])

Create a new TextSplitter.

atransform_documents(documents, **kwargs)

Asynchronously transform a list of documents.

create_documents(texts[, metadatas])

Create documents from a list of texts.

from_huggingface_tokenizer(tokenizer, **kwargs)

Text splitter that uses HuggingFace tokenizer to count length.

from_tiktoken_encoder([encoding_name, ...])

Text splitter that uses tiktoken encoder to count length.

split_documents(documents)

Split documents.

split_text(text)

Split incoming text and return chunks.

transform_documents(documents, **kwargs)

Transform sequence of documents by splitting them.

Parameters
  • separator (str) –

  • is_separator_regex (bool) –

  • kwargs (Any) –

__init__(separator: str = '\n\n', is_separator_regex: bool = False, **kwargs: Any) None[source]¶

Create a new TextSplitter.

Parameters
  • separator (str) –

  • is_separator_regex (bool) –

  • kwargs (Any) –

Return type

None

async atransform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document]¶

Asynchronously transform a list of documents.

Parameters
  • documents (Sequence[Document]) – A sequence of Documents to be transformed.

  • kwargs (Any) –

Returns

A list of transformed Documents.

Return type

Sequence[Document]

create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) List[Document]¶

Create documents from a list of texts.

Parameters
  • texts (List[str]) –

  • metadatas (Optional[List[dict]]) –

Return type

List[Document]

classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) TextSplitter¶

Text splitter that uses HuggingFace tokenizer to count length.

Parameters
  • tokenizer (Any) –

  • kwargs (Any) –

Return type

TextSplitter

classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) TS¶

Text splitter that uses tiktoken encoder to count length.

Parameters
  • encoding_name (str) –

  • model_name (Optional[str]) –

  • allowed_special (Union[Literal['all'], ~typing.AbstractSet[str]]) –

  • disallowed_special (Union[Literal['all'], ~typing.Collection[str]]) –

  • kwargs (Any) –

Return type

TS

split_documents(documents: Iterable[Document]) List[Document]¶

Split documents.

Parameters

documents (Iterable[Document]) –

Return type

List[Document]

split_text(text: str) List[str][source]¶

Split incoming text and return chunks.

Parameters

text (str) –

Return type

List[str]

transform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document]¶

Transform sequence of documents by splitting them.

Parameters
  • documents (Sequence[Document]) –

  • kwargs (Any) –

Return type

Sequence[Document]

Examples using CharacterTextSplitter¶