langchain.agents.openai_functions_agent.base
.OpenAIFunctionsAgentΒΆ
- class langchain.agents.openai_functions_agent.base.OpenAIFunctionsAgent[source]ΒΆ
Bases:
BaseSingleActionAgent
[Deprecated] An Agent driven by OpenAIs function powered API.
- Parameters
llm β This should be an instance of ChatOpenAI, specifically a model that supports using functions.
tools β The tools this agent has access to.
prompt β The prompt for this agent, should support agent_scratchpad as one of the variables. For an easy way to construct this prompt, use OpenAIFunctionsAgent.create_prompt(β¦)
Notes
Deprecated since version langchain==0.1.0: Use create_openai_functions_agent instead.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param llm: BaseLanguageModel [Required]ΒΆ
- param output_parser: Type[OpenAIFunctionsAgentOutputParser] = <class 'langchain.agents.output_parsers.openai_functions.OpenAIFunctionsAgentOutputParser'>ΒΆ
- param prompt: BasePromptTemplate [Required]ΒΆ
- async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Union[AgentAction, AgentFinish] [source]ΒΆ
Given input, decided what to do.
- Parameters
intermediate_steps (List[Tuple[AgentAction, str]]) β Steps the LLM has taken to date, along with observations
**kwargs (Any) β User inputs.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) β
**kwargs β
- Returns
Action specifying what tool to use.
- Return type
Union[AgentAction, AgentFinish]
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ΒΆ
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
- Return type
Model
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ΒΆ
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
- Returns
new model instance
- Return type
Model
- classmethod create_prompt(system_message: Optional[SystemMessage] = SystemMessage(content='You are a helpful AI assistant.'), extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None) ChatPromptTemplate [source]ΒΆ
Create prompt for this agent.
- Parameters
system_message (Optional[SystemMessage]) β Message to use as the system message that will be the first in the prompt.
extra_prompt_messages (Optional[List[BaseMessagePromptTemplate]]) β Prompt messages that will be placed between the system message and the new human input.
- Returns
A prompt template to pass into this agent.
- Return type
- dict(**kwargs: Any) Dict ΒΆ
Return dictionary representation of agent.
- Parameters
kwargs (Any) β
- Return type
Dict
- classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, system_message: Optional[SystemMessage] = SystemMessage(content='You are a helpful AI assistant.'), **kwargs: Any) BaseSingleActionAgent [source]ΒΆ
Construct an agent from an LLM and tools.
- Parameters
llm (BaseLanguageModel) β
tools (Sequence[BaseTool]) β
callback_manager (Optional[BaseCallbackManager]) β
extra_prompt_messages (Optional[List[BaseMessagePromptTemplate]]) β
system_message (Optional[SystemMessage]) β
kwargs (Any) β
- Return type
- classmethod from_orm(obj: Any) Model ΒΆ
- Parameters
obj (Any) β
- Return type
Model
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ΒΆ
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
- Return type
unicode
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ΒΆ
- Parameters
path (Union[str, Path]) β
content_type (unicode) β
encoding (unicode) β
proto (Protocol) β
allow_pickle (bool) β
- Return type
Model
- classmethod parse_obj(obj: Any) Model ΒΆ
- Parameters
obj (Any) β
- Return type
Model
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ΒΆ
- Parameters
b (Union[str, bytes]) β
content_type (unicode) β
encoding (unicode) β
proto (Protocol) β
allow_pickle (bool) β
- Return type
Model
- plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, with_functions: bool = True, **kwargs: Any) Union[AgentAction, AgentFinish] [source]ΒΆ
Given input, decided what to do.
- Parameters
intermediate_steps (List[Tuple[AgentAction, str]]) β Steps the LLM has taken to date, along with observations
**kwargs (Any) β User inputs.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) β
with_functions (bool) β
**kwargs β
- Returns
Action specifying what tool to use.
- Return type
Union[AgentAction, AgentFinish]
- return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) AgentFinish [source]ΒΆ
Return response when agent has been stopped due to max iterations.
- Parameters
early_stopping_method (str) β
intermediate_steps (List[Tuple[AgentAction, str]]) β
kwargs (Any) β
- Return type
- save(file_path: Union[Path, str]) None ΒΆ
Save the agent.
- Parameters
file_path (Union[Path, str]) β Path to file to save the agent to.
- Return type
None
Example: .. code-block:: python
# If working with agent executor agent.agent.save(file_path=βpath/agent.yamlβ)
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ΒΆ
- Parameters
by_alias (bool) β
ref_template (unicode) β
- Return type
DictStrAny
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ΒΆ
- Parameters
by_alias (bool) β
ref_template (unicode) β
dumps_kwargs (Any) β
- Return type
unicode
- tool_run_logging_kwargs() Dict ΒΆ
- Return type
Dict
- classmethod update_forward_refs(**localns: Any) None ΒΆ
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- Parameters
localns (Any) β
- Return type
None
- classmethod validate(value: Any) Model ΒΆ
- Parameters
value (Any) β
- Return type
Model
- property functions: List[dict]ΒΆ
- property input_keys: List[str]ΒΆ
Get input keys. Input refers to user input here.
- property return_values: List[str]ΒΆ
Return values of the agent.