Source code for langchain_core.messages.ai
from typing import Any, List, Literal
from langchain_core.messages.base import (
BaseMessage,
BaseMessageChunk,
merge_content,
)
from langchain_core.utils._merge import merge_dicts
[docs]class AIMessage(BaseMessage):
"""Message from an AI."""
example: bool = False
"""Whether this Message is being passed in to the model as part of an example
conversation.
"""
type: Literal["ai"] = "ai"
[docs] @classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "schema", "messages"]
AIMessage.update_forward_refs()
[docs]class AIMessageChunk(AIMessage, BaseMessageChunk):
"""Message chunk from an AI."""
# Ignoring mypy re-assignment here since we're overriding the value
# to make sure that the chunk variant can be discriminated from the
# non-chunk variant.
type: Literal["AIMessageChunk"] = "AIMessageChunk" # type: ignore[assignment] # noqa: E501
[docs] @classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "schema", "messages"]
def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore
if isinstance(other, AIMessageChunk):
if self.example != other.example:
raise ValueError(
"Cannot concatenate AIMessageChunks with different example values."
)
return self.__class__(
example=self.example,
content=merge_content(self.content, other.content),
additional_kwargs=merge_dicts(
self.additional_kwargs, other.additional_kwargs
),
response_metadata=merge_dicts(
self.response_metadata, other.response_metadata
),
)
return super().__add__(other)