Source code for langchain_community.vectorstores.pgembedding

from __future__ import annotations

import logging
import uuid
from typing import Any, Dict, Iterable, List, Optional, Tuple, Type

import sqlalchemy
from sqlalchemy import func
from sqlalchemy.dialects.postgresql import JSON, UUID
from sqlalchemy.orm import Session, relationship

try:
    from sqlalchemy.orm import declarative_base
except ImportError:
    from sqlalchemy.ext.declarative import declarative_base

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env
from langchain_core.vectorstores import VectorStore

Base = declarative_base()  # type: Any


ADA_TOKEN_COUNT = 1536
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"


[docs]class BaseModel(Base): """Base model for all SQL stores.""" __abstract__ = True uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
[docs]class CollectionStore(BaseModel): """Collection store.""" __tablename__ = "langchain_pg_collection" name = sqlalchemy.Column(sqlalchemy.String) cmetadata = sqlalchemy.Column(JSON) embeddings = relationship( "EmbeddingStore", back_populates="collection", passive_deletes=True, )
[docs] @classmethod def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]: return session.query(cls).filter(cls.name == name).first() # type: ignore
[docs] @classmethod def get_or_create( cls, session: Session, name: str, cmetadata: Optional[dict] = None, ) -> Tuple["CollectionStore", bool]: """ Get or create a collection. Returns [Collection, bool] where the bool is True if the collection was created. """ created = False collection = cls.get_by_name(session, name) if collection: return collection, created collection = cls(name=name, cmetadata=cmetadata) session.add(collection) session.commit() created = True return collection, created
[docs]class EmbeddingStore(BaseModel): """Embedding store.""" __tablename__ = "langchain_pg_embedding" collection_id = sqlalchemy.Column( UUID(as_uuid=True), sqlalchemy.ForeignKey( f"{CollectionStore.__tablename__}.uuid", ondelete="CASCADE", ), ) collection = relationship(CollectionStore, back_populates="embeddings") embedding = sqlalchemy.Column(sqlalchemy.ARRAY(sqlalchemy.REAL)) # type: ignore document = sqlalchemy.Column(sqlalchemy.String, nullable=True) cmetadata = sqlalchemy.Column(JSON, nullable=True) # custom_id : any user defined id custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
[docs]class QueryResult: """Result from a query.""" EmbeddingStore: EmbeddingStore distance: float
[docs]class PGEmbedding(VectorStore): """`Postgres` with the `pg_embedding` extension as a vector store. pg_embedding uses sequential scan by default. but you can create a HNSW index using the create_hnsw_index method. - `connection_string` is a postgres connection string. - `embedding_function` any embedding function implementing `langchain.embeddings.base.Embeddings` interface. - `collection_name` is the name of the collection to use. (default: langchain) - NOTE: This is not the name of the table, but the name of the collection. The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables. - `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN) - `EUCLIDEAN` is the euclidean distance. - `pre_delete_collection` if True, will delete the collection if it exists. (default: False) - Useful for testing. """
[docs] def __init__( self, connection_string: str, embedding_function: Embeddings, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, collection_metadata: Optional[dict] = None, pre_delete_collection: bool = False, logger: Optional[logging.Logger] = None, ) -> None: self.connection_string = connection_string self.embedding_function = embedding_function self.collection_name = collection_name self.collection_metadata = collection_metadata self.pre_delete_collection = pre_delete_collection self.logger = logger or logging.getLogger(__name__) self.__post_init__()
def __post_init__( self, ) -> None: self._conn = self.connect() self.create_hnsw_extension() self.create_tables_if_not_exists() self.create_collection() @property def embeddings(self) -> Embeddings: return self.embedding_function
[docs] def connect(self) -> sqlalchemy.engine.Connection: engine = sqlalchemy.create_engine(self.connection_string) conn = engine.connect() return conn
[docs] def create_hnsw_extension(self) -> None: try: with Session(self._conn) as session: statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS embedding") session.execute(statement) session.commit() except Exception as e: self.logger.exception(e)
[docs] def create_tables_if_not_exists(self) -> None: with self._conn.begin(): Base.metadata.create_all(self._conn)
[docs] def drop_tables(self) -> None: with self._conn.begin(): Base.metadata.drop_all(self._conn)
[docs] def create_collection(self) -> None: if self.pre_delete_collection: self.delete_collection() with Session(self._conn) as session: CollectionStore.get_or_create( session, self.collection_name, cmetadata=self.collection_metadata )
[docs] def create_hnsw_index( self, max_elements: int = 10000, dims: int = ADA_TOKEN_COUNT, m: int = 8, ef_construction: int = 16, ef_search: int = 16, ) -> None: create_index_query = sqlalchemy.text( "CREATE INDEX IF NOT EXISTS langchain_pg_embedding_idx " "ON langchain_pg_embedding USING hnsw (embedding) " "WITH (" "maxelements = {}, " "dims = {}, " "m = {}, " "efconstruction = {}, " "efsearch = {}" ");".format(max_elements, dims, m, ef_construction, ef_search) ) # Execute the queries try: with Session(self._conn) as session: # Create the HNSW index session.execute(create_index_query) session.commit() print("HNSW extension and index created successfully.") # noqa: T201 except Exception as e: print(f"Failed to create HNSW extension or index: {e}") # noqa: T201
[docs] def delete_collection(self) -> None: self.logger.debug("Trying to delete collection") with Session(self._conn) as session: collection = self.get_collection(session) if not collection: self.logger.warning("Collection not found") return session.delete(collection) session.commit()
[docs] def get_collection(self, session: Session) -> Optional["CollectionStore"]: return CollectionStore.get_by_name(session, self.collection_name)
@classmethod def _initialize_from_embeddings( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, pre_delete_collection: bool = False, **kwargs: Any, ) -> PGEmbedding: if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] connection_string = cls.get_connection_string(kwargs) store = cls( connection_string=connection_string, collection_name=collection_name, embedding_function=embedding, pre_delete_collection=pre_delete_collection, ) store.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) return store
[docs] def add_embeddings( self, texts: List[str], embeddings: List[List[float]], metadatas: List[dict], ids: List[str], **kwargs: Any, ) -> None: with Session(self._conn) as session: collection = self.get_collection(session) if not collection: raise ValueError("Collection not found") for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids): embedding_store = EmbeddingStore( embedding=embedding, document=text, cmetadata=metadata, custom_id=id, ) collection.embeddings.append(embedding_store) session.add(embedding_store) session.commit()
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = self.embedding_function.embed_documents(list(texts)) if not metadatas: metadatas = [{} for _ in texts] with Session(self._conn) as session: collection = self.get_collection(session) if not collection: raise ValueError("Collection not found") for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids): embedding_store = EmbeddingStore( embedding=embedding, document=text, cmetadata=metadata, custom_id=id, ) collection.embeddings.append(embedding_store) session.add(embedding_store) session.commit() return ids
[docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, ) -> List[Tuple[Document, float]]: embedding = self.embedding_function.embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter ) return docs
[docs] def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[dict] = None, ) -> List[Tuple[Document, float]]: with Session(self._conn) as session: collection = self.get_collection(session) set_enable_seqscan_stmt = sqlalchemy.text("SET enable_seqscan = off") session.execute(set_enable_seqscan_stmt) if not collection: raise ValueError("Collection not found") filter_by = EmbeddingStore.collection_id == collection.uuid if filter is not None: filter_clauses = [] for key, value in filter.items(): IN = "in" if isinstance(value, dict) and IN in map(str.lower, value): value_case_insensitive = { k.lower(): v for k, v in value.items() } filter_by_metadata = EmbeddingStore.cmetadata[key].astext.in_( value_case_insensitive[IN] ) filter_clauses.append(filter_by_metadata) elif isinstance(value, dict) and "substring" in map( str.lower, value ): filter_by_metadata = EmbeddingStore.cmetadata[key].astext.ilike( f"%{value['substring']}%" ) filter_clauses.append(filter_by_metadata) else: filter_by_metadata = EmbeddingStore.cmetadata[ key ].astext == str(value) filter_clauses.append(filter_by_metadata) filter_by = sqlalchemy.and_(filter_by, *filter_clauses) results: List[QueryResult] = ( session.query( EmbeddingStore, func.abs(EmbeddingStore.embedding.op("<->")(embedding)).label( "distance" ), ) # Specify the columns you need here, e.g., EmbeddingStore.embedding .filter(filter_by) .order_by( func.abs(EmbeddingStore.embedding.op("<->")(embedding)).asc() ) # Using PostgreSQL specific operator with the correct column name .limit(k) .all() ) docs = [ ( Document( page_content=result.EmbeddingStore.document, # type: ignore[arg-type] metadata=result.EmbeddingStore.cmetadata, ), result.distance if self.embedding_function is not None else 0.0, ) for result in results ] return docs
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: docs_and_scores = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter ) return [doc for doc, _ in docs_and_scores]
[docs] @classmethod def from_texts( cls: Type[PGEmbedding], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> PGEmbedding: embeddings = embedding.embed_documents(list(texts)) return cls._initialize_from_embeddings( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, pre_delete_collection=pre_delete_collection, **kwargs, )
[docs] @classmethod def from_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> PGEmbedding: texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls._initialize_from_embeddings( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, pre_delete_collection=pre_delete_collection, **kwargs, )
[docs] @classmethod def from_existing_index( cls: Type[PGEmbedding], embedding: Embeddings, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, pre_delete_collection: bool = False, **kwargs: Any, ) -> PGEmbedding: connection_string = cls.get_connection_string(kwargs) store = cls( connection_string=connection_string, collection_name=collection_name, embedding_function=embedding, pre_delete_collection=pre_delete_collection, ) return store
[docs] @classmethod def get_connection_string(cls, kwargs: Dict[str, Any]) -> str: connection_string: str = get_from_dict_or_env( data=kwargs, key="connection_string", env_key="POSTGRES_CONNECTION_STRING", ) if not connection_string: raise ValueError( "Postgres connection string is required" "Either pass it as a parameter" "or set the POSTGRES_CONNECTION_STRING environment variable." ) return connection_string
[docs] @classmethod def from_documents( cls: Type[PGEmbedding], documents: List[Document], embedding: Embeddings, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> PGEmbedding: texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] connection_string = cls.get_connection_string(kwargs) kwargs["connection_string"] = connection_string return cls.from_texts( texts=texts, pre_delete_collection=pre_delete_collection, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, **kwargs, )