Source code for langchain_community.retrievers.kendra

import re
from abc import ABC, abstractmethod
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Sequence,
    Union,
)

from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import (
    BaseModel,
    Extra,
    Field,
    root_validator,
    validator,
)
from langchain_core.retrievers import BaseRetriever
from typing_extensions import Annotated


[docs]def clean_excerpt(excerpt: str) -> str: """Clean an excerpt from Kendra. Args: excerpt: The excerpt to clean. Returns: The cleaned excerpt. """ if not excerpt: return excerpt res = re.sub(r"\s+", " ", excerpt).replace("...", "") return res
[docs]def combined_text(item: "ResultItem") -> str: """Combine a ResultItem title and excerpt into a single string. Args: item: the ResultItem of a Kendra search. Returns: A combined text of the title and excerpt of the given item. """ text = "" title = item.get_title() if title: text += f"Document Title: {title}\n" excerpt = clean_excerpt(item.get_excerpt()) if excerpt: text += f"Document Excerpt: \n{excerpt}\n" return text
DocumentAttributeValueType = Union[str, int, List[str], None] """Possible types of a DocumentAttributeValue. Dates are also represented as str. """ # Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class Highlight(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """Information that highlights the keywords in the excerpt.""" BeginOffset: int """The zero-based location in the excerpt where the highlight starts.""" EndOffset: int """The zero-based location in the excerpt where the highlight ends.""" TopAnswer: Optional[bool] """Indicates whether the result is the best one.""" Type: Optional[str] """The highlight type: STANDARD or THESAURUS_SYNONYM."""
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class TextWithHighLights(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """Text with highlights.""" Text: str """The text.""" Highlights: Optional[Any] """The highlights."""
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class AdditionalResultAttributeValue( # type: ignore[call-arg] BaseModel, extra=Extra.allow ): """Value of an additional result attribute.""" TextWithHighlightsValue: TextWithHighLights """The text with highlights value."""
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class AdditionalResultAttribute(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """Additional result attribute.""" Key: str """The key of the attribute.""" ValueType: Literal["TEXT_WITH_HIGHLIGHTS_VALUE"] """The type of the value.""" Value: AdditionalResultAttributeValue """The value of the attribute."""
[docs] def get_value_text(self) -> str: return self.Value.TextWithHighlightsValue.Text
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class DocumentAttributeValue(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """Value of a document attribute.""" DateValue: Optional[str] """The date expressed as an ISO 8601 string.""" LongValue: Optional[int] """The long value.""" StringListValue: Optional[List[str]] """The string list value.""" StringValue: Optional[str] """The string value.""" @property def value(self) -> DocumentAttributeValueType: """The only defined document attribute value or None. According to Amazon Kendra, you can only provide one value for a document attribute. """ if self.DateValue: return self.DateValue if self.LongValue: return self.LongValue if self.StringListValue: return self.StringListValue if self.StringValue: return self.StringValue return None
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class DocumentAttribute(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """Document attribute.""" Key: str """The key of the attribute.""" Value: DocumentAttributeValue """The value of the attribute."""
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class ResultItem(BaseModel, ABC, extra=Extra.allow): # type: ignore[call-arg] """Base class of a result item.""" Id: Optional[str] """The ID of the relevant result item.""" DocumentId: Optional[str] """The document ID.""" DocumentURI: Optional[str] """The document URI.""" DocumentAttributes: Optional[List[DocumentAttribute]] = [] """The document attributes.""" ScoreAttributes: Optional[dict] """The kendra score confidence"""
[docs] @abstractmethod def get_title(self) -> str: """Document title."""
[docs] @abstractmethod def get_excerpt(self) -> str: """Document excerpt or passage original content as retrieved by Kendra."""
[docs] def get_additional_metadata(self) -> dict: """Document additional metadata dict. This returns any extra metadata except these: * result_id * document_id * source * title * excerpt * document_attributes """ return {}
[docs] def get_document_attributes_dict(self) -> Dict[str, DocumentAttributeValueType]: """Document attributes dict.""" return {attr.Key: attr.Value.value for attr in (self.DocumentAttributes or [])}
[docs] def get_score_attribute(self) -> str: """Document Score Confidence""" if self.ScoreAttributes is not None: return self.ScoreAttributes["ScoreConfidence"] else: return "NOT_AVAILABLE"
[docs] def to_doc( self, page_content_formatter: Callable[["ResultItem"], str] = combined_text ) -> Document: """Converts this item to a Document.""" page_content = page_content_formatter(self) metadata = self.get_additional_metadata() metadata.update( { "result_id": self.Id, "document_id": self.DocumentId, "source": self.DocumentURI, "title": self.get_title(), "excerpt": self.get_excerpt(), "document_attributes": self.get_document_attributes_dict(), "score": self.get_score_attribute(), } ) return Document(page_content=page_content, metadata=metadata)
[docs]class QueryResultItem(ResultItem): """Query API result item.""" DocumentTitle: TextWithHighLights """The document title.""" FeedbackToken: Optional[str] """Identifies a particular result from a particular query.""" Format: Optional[str] """ If the Type is ANSWER, then format is either: * TABLE: a table excerpt is returned in TableExcerpt; * TEXT: a text excerpt is returned in DocumentExcerpt. """ Type: Optional[str] """Type of result: DOCUMENT or QUESTION_ANSWER or ANSWER""" AdditionalAttributes: Optional[List[AdditionalResultAttribute]] = [] """One or more additional attributes associated with the result.""" DocumentExcerpt: Optional[TextWithHighLights] """Excerpt of the document text."""
[docs] def get_title(self) -> str: return self.DocumentTitle.Text
[docs] def get_attribute_value(self) -> str: if not self.AdditionalAttributes: return "" if not self.AdditionalAttributes[0]: return "" else: return self.AdditionalAttributes[0].get_value_text()
[docs] def get_excerpt(self) -> str: if ( self.AdditionalAttributes and self.AdditionalAttributes[0].Key == "AnswerText" ): excerpt = self.get_attribute_value() elif self.DocumentExcerpt: excerpt = self.DocumentExcerpt.Text else: excerpt = "" return excerpt
[docs] def get_additional_metadata(self) -> dict: additional_metadata = {"type": self.Type} return additional_metadata
[docs]class RetrieveResultItem(ResultItem): """Retrieve API result item.""" DocumentTitle: Optional[str] """The document title.""" Content: Optional[str] """The content of the item."""
[docs] def get_title(self) -> str: return self.DocumentTitle or ""
[docs] def get_excerpt(self) -> str: return self.Content or ""
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class QueryResult(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """`Amazon Kendra Query API` search result. It is composed of: * Relevant suggested answers: either a text excerpt or table excerpt. * Matching FAQs or questions-answer from your FAQ file. * Documents including an excerpt of each document with its title. """ ResultItems: List[QueryResultItem] """The result items."""
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class RetrieveResult(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """`Amazon Kendra Retrieve API` search result. It is composed of: * relevant passages or text excerpts given an input query. """ QueryId: str """The ID of the query.""" ResultItems: List[RetrieveResultItem] """The result items."""
KENDRA_CONFIDENCE_MAPPING = { "NOT_AVAILABLE": 0.0, "LOW": 0.25, "MEDIUM": 0.50, "HIGH": 0.75, "VERY_HIGH": 1.0, }
[docs]class AmazonKendraRetriever(BaseRetriever): """`Amazon Kendra Index` retriever. Args: index_id: Kendra index id region_name: The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config. credentials_profile_name: The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. top_k: No of results to return attribute_filter: Additional filtering of results based on metadata See: https://docs.aws.amazon.com/kendra/latest/APIReference page_content_formatter: generates the Document page_content allowing access to all result item attributes. By default, it uses the item's title and excerpt. client: boto3 client for Kendra user_context: Provides information about the user context See: https://docs.aws.amazon.com/kendra/latest/APIReference Example: .. code-block:: python retriever = AmazonKendraRetriever( index_id="c0806df7-e76b-4bce-9b5c-d5582f6b1a03" ) """ index_id: str region_name: Optional[str] = None credentials_profile_name: Optional[str] = None top_k: int = 3 attribute_filter: Optional[Dict] = None page_content_formatter: Callable[[ResultItem], str] = combined_text client: Any user_context: Optional[Dict] = None min_score_confidence: Annotated[Optional[float], Field(ge=0.0, le=1.0)] @validator("top_k") def validate_top_k(cls, value: int) -> int: if value < 0: raise ValueError(f"top_k ({value}) cannot be negative.") return value @root_validator(pre=True) def create_client(cls, values: Dict[str, Any]) -> Dict[str, Any]: if values.get("client") is not None: return values try: import boto3 if values.get("credentials_profile_name"): session = boto3.Session(profile_name=values["credentials_profile_name"]) else: # use default credentials session = boto3.Session() client_params = {} if values.get("region_name"): client_params["region_name"] = values["region_name"] values["client"] = session.client("kendra", **client_params) return values except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e def _kendra_query(self, query: str) -> Sequence[ResultItem]: kendra_kwargs = { "IndexId": self.index_id, # truncate the query to ensure that # there is no validation exception from Kendra. "QueryText": query.strip()[0:999], "PageSize": self.top_k, } if self.attribute_filter is not None: kendra_kwargs["AttributeFilter"] = self.attribute_filter if self.user_context is not None: kendra_kwargs["UserContext"] = self.user_context response = self.client.retrieve(**kendra_kwargs) r_result = RetrieveResult.parse_obj(response) if r_result.ResultItems: return r_result.ResultItems # Retrieve API returned 0 results, fall back to Query API response = self.client.query(**kendra_kwargs) q_result = QueryResult.parse_obj(response) return q_result.ResultItems def _get_top_k_docs(self, result_items: Sequence[ResultItem]) -> List[Document]: top_docs = [ item.to_doc(self.page_content_formatter) for item in result_items[: self.top_k] ] return top_docs def _filter_by_score_confidence(self, docs: List[Document]) -> List[Document]: """ Filter out the records that have a score confidence greater than the required threshold. """ if not self.min_score_confidence: return docs filtered_docs = [ item for item in docs if ( item.metadata.get("score") is not None and isinstance(item.metadata["score"], str) and KENDRA_CONFIDENCE_MAPPING.get(item.metadata["score"], 0.0) >= self.min_score_confidence ) ] return filtered_docs def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """Run search on Kendra index and get top k documents Example: .. code-block:: python docs = retriever.get_relevant_documents('This is my query') """ result_items = self._kendra_query(query) top_k_docs = self._get_top_k_docs(result_items) return self._filter_by_score_confidence(top_k_docs)