Source code for langchain_community.embeddings.octoai_embeddings
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain_core.utils import get_from_dict_or_env
DEFAULT_EMBED_INSTRUCTION = "Represent this input: "
DEFAULT_QUERY_INSTRUCTION = "Represent the question for retrieving similar documents: "
[docs]class OctoAIEmbeddings(BaseModel, Embeddings):
"""OctoAI Compute Service embedding models.
The environment variable ``OCTOAI_API_TOKEN`` should be set
with your API token, or it can be passed
as a named parameter to the constructor.
"""
endpoint_url: Optional[str] = Field(None, description="Endpoint URL to use.")
model_kwargs: Optional[dict] = Field(
None, description="Keyword arguments to pass to the model."
)
octoai_api_token: Optional[str] = Field(None, description="OCTOAI API Token")
embed_instruction: str = Field(
DEFAULT_EMBED_INSTRUCTION,
description="Instruction to use for embedding documents.",
)
query_instruction: str = Field(
DEFAULT_QUERY_INSTRUCTION, description="Instruction to use for embedding query."
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Ensure that the API key and python package exist in environment."""
values["octoai_api_token"] = get_from_dict_or_env(
values, "octoai_api_token", "OCTOAI_API_TOKEN"
)
values["endpoint_url"] = get_from_dict_or_env(
values, "endpoint_url", "https://text.octoai.run/v1/embeddings"
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Return the identifying parameters."""
return {
"endpoint_url": self.endpoint_url,
"model_kwargs": self.model_kwargs or {},
}
def _compute_embeddings(
self, texts: List[str], instruction: str
) -> List[List[float]]:
"""Compute embeddings using an OctoAI instruct model."""
from octoai import client
embedding = []
embeddings = []
octoai_client = client.Client(token=self.octoai_api_token)
for text in texts:
parameter_payload = {
"sentence": str([text]),
"input": str([text]),
"instruction": str([instruction]),
"model": "thenlper/gte-large",
"parameters": self.model_kwargs or {},
}
try:
resp_json = octoai_client.infer(self.endpoint_url, parameter_payload)
if "embeddings" in resp_json:
embedding = resp_json["embeddings"]
elif "data" in resp_json:
json_data = resp_json["data"]
for item in json_data:
if "embedding" in item:
embedding = item["embedding"]
except Exception as e:
raise ValueError(f"Error raised by the inference endpoint: {e}") from e
embeddings.append(embedding)
return embeddings
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute document embeddings using an OctoAI instruct model."""
texts = list(map(lambda x: x.replace("\n", " "), texts))
return self._compute_embeddings(texts, self.embed_instruction)
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embedding using an OctoAI instruct model."""
text = text.replace("\n", " ")
return self._compute_embeddings([text], self.query_instruction)[0]