import logging
from typing import Any, Dict, List, Mapping, Optional, cast
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import (
ChatGeneration,
ChatResult,
)
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr
logger = logging.getLogger(__name__)
# Ignoring type because below is valid pydantic code
# Unexpected keyword argument "extra" for "__init_subclass__" of "object" [call-arg]
[docs]class ChatParams(BaseModel, extra=Extra.allow):
"""Parameters for the `Javelin AI Gateway` LLM."""
temperature: float = 0.0
stop: Optional[List[str]] = None
max_tokens: Optional[int] = None
[docs]class ChatJavelinAIGateway(BaseChatModel):
"""`Javelin AI Gateway` chat models API.
To use, you should have the ``javelin_sdk`` python package installed.
For more information, see https://docs.getjavelin.io
Example:
.. code-block:: python
from langchain_community.chat_models import ChatJavelinAIGateway
chat = ChatJavelinAIGateway(
gateway_uri="<javelin-ai-gateway-uri>",
route="<javelin-ai-gateway-chat-route>",
params={
"temperature": 0.1
}
)
"""
route: str
"""The route to use for the Javelin AI Gateway API."""
gateway_uri: Optional[str] = None
"""The URI for the Javelin AI Gateway API."""
params: Optional[ChatParams] = None
"""Parameters for the Javelin AI Gateway LLM."""
client: Any
"""javelin client."""
javelin_api_key: Optional[SecretStr] = None
"""The API key for the Javelin AI Gateway."""
def __init__(self, **kwargs: Any):
try:
from javelin_sdk import (
JavelinClient,
UnauthorizedError,
)
except ImportError:
raise ImportError(
"Could not import javelin_sdk python package. "
"Please install it with `pip install javelin_sdk`."
)
super().__init__(**kwargs)
if self.gateway_uri:
try:
self.client = JavelinClient(
base_url=self.gateway_uri,
api_key=cast(SecretStr, self.javelin_api_key).get_secret_value(),
)
except UnauthorizedError as e:
raise ValueError("Javelin: Incorrect API Key.") from e
@property
def _default_params(self) -> Dict[str, Any]:
params: Dict[str, Any] = {
"gateway_uri": self.gateway_uri,
"javelin_api_key": cast(SecretStr, self.javelin_api_key).get_secret_value(),
"route": self.route,
**(self.params.dict() if self.params else {}),
}
return params
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts = [
ChatJavelinAIGateway._convert_message_to_dict(message)
for message in messages
]
data: Dict[str, Any] = {
"messages": message_dicts,
**(self.params.dict() if self.params else {}),
}
resp = self.client.query_route(self.route, query_body=data)
return ChatJavelinAIGateway._create_chat_result(resp.dict())
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts = [
ChatJavelinAIGateway._convert_message_to_dict(message)
for message in messages
]
data: Dict[str, Any] = {
"messages": message_dicts,
**(self.params.dict() if self.params else {}),
}
resp = await self.client.aquery_route(self.route, query_body=data)
return ChatJavelinAIGateway._create_chat_result(resp.dict())
@property
def _identifying_params(self) -> Dict[str, Any]:
return self._default_params
def _get_invocation_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> Dict[str, Any]:
"""Get the parameters used to invoke the model FOR THE CALLBACKS."""
return {
**self._default_params,
**super()._get_invocation_params(stop=stop, **kwargs),
}
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "javelin-ai-gateway-chat"
@staticmethod
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
role = _dict["role"]
content = _dict["content"]
if role == "user":
return HumanMessage(content=content)
elif role == "assistant":
return AIMessage(content=content)
elif role == "system":
return SystemMessage(content=content)
else:
return ChatMessage(content=content, role=role)
@staticmethod
def _raise_functions_not_supported() -> None:
raise ValueError(
"Function messages are not supported by the Javelin AI Gateway. Please"
" create a feature request at https://docs.getjavelin.io"
)
@staticmethod
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, FunctionMessage):
raise ValueError(
"Function messages are not supported by the Javelin AI Gateway. Please"
" create a feature request at https://docs.getjavelin.io"
)
else:
raise ValueError(f"Got unknown message type: {message}")
if "function_call" in message.additional_kwargs:
ChatJavelinAIGateway._raise_functions_not_supported()
if message.additional_kwargs:
logger.warning(
"Additional message arguments are unsupported by Javelin AI Gateway "
" and will be ignored: %s",
message.additional_kwargs,
)
return message_dict
@staticmethod
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
generations = []
for candidate in response["llm_response"]["choices"]:
message = ChatJavelinAIGateway._convert_dict_to_message(
candidate["message"]
)
message_metadata = candidate.get("metadata", {})
gen = ChatGeneration(
message=message,
generation_info=dict(message_metadata),
)
generations.append(gen)
response_metadata = response.get("metadata", {})
return ChatResult(generations=generations, llm_output=response_metadata)