Source code for langchain_community.chat_models.anthropic

from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, cast

from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.prompt_values import PromptValue

from langchain_community.llms.anthropic import _AnthropicCommon


def _convert_one_message_to_text(
    message: BaseMessage,
    human_prompt: str,
    ai_prompt: str,
) -> str:
    content = cast(str, message.content)
    if isinstance(message, ChatMessage):
        message_text = f"\n\n{message.role.capitalize()}: {content}"
    elif isinstance(message, HumanMessage):
        message_text = f"{human_prompt} {content}"
    elif isinstance(message, AIMessage):
        message_text = f"{ai_prompt} {content}"
    elif isinstance(message, SystemMessage):
        message_text = content
    else:
        raise ValueError(f"Got unknown type {message}")
    return message_text


[docs]def convert_messages_to_prompt_anthropic( messages: List[BaseMessage], *, human_prompt: str = "\n\nHuman:", ai_prompt: str = "\n\nAssistant:", ) -> str: """Format a list of messages into a full prompt for the Anthropic model Args: messages (List[BaseMessage]): List of BaseMessage to combine. human_prompt (str, optional): Human prompt tag. Defaults to "\n\nHuman:". ai_prompt (str, optional): AI prompt tag. Defaults to "\n\nAssistant:". Returns: str: Combined string with necessary human_prompt and ai_prompt tags. """ messages = messages.copy() # don't mutate the original list if not isinstance(messages[-1], AIMessage): messages.append(AIMessage(content="")) text = "".join( _convert_one_message_to_text(message, human_prompt, ai_prompt) for message in messages ) # trim off the trailing ' ' that might come from the "Assistant: " return text.rstrip()
[docs]@deprecated( since="0.0.28", removal="0.2", alternative_import="langchain_anthropic.ChatAnthropic", ) class ChatAnthropic(BaseChatModel, _AnthropicCommon): """`Anthropic` chat large language models. To use, you should have the ``anthropic`` python package installed, and the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python import anthropic from langchain_community.chat_models import ChatAnthropic model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key") """ class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True arbitrary_types_allowed = True @property def lc_secrets(self) -> Dict[str, str]: return {"anthropic_api_key": "ANTHROPIC_API_KEY"} @property def _llm_type(self) -> str: """Return type of chat model.""" return "anthropic-chat"
[docs] @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True
[docs] @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "chat_models", "anthropic"]
def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str: """Format a list of messages into a full prompt for the Anthropic model Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags. """ prompt_params = {} if self.HUMAN_PROMPT: prompt_params["human_prompt"] = self.HUMAN_PROMPT if self.AI_PROMPT: prompt_params["ai_prompt"] = self.AI_PROMPT return convert_messages_to_prompt_anthropic(messages=messages, **prompt_params)
[docs] def convert_prompt(self, prompt: PromptValue) -> str: return self._convert_messages_to_prompt(prompt.to_messages())
def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs} if stop: params["stop_sequences"] = stop stream_resp = self.client.completions.create(**params, stream=True) for data in stream_resp: delta = data.completion chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta)) if run_manager: run_manager.on_llm_new_token(delta, chunk=chunk) yield chunk async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs} if stop: params["stop_sequences"] = stop stream_resp = await self.async_client.completions.create(**params, stream=True) async for data in stream_resp: delta = data.completion chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta)) if run_manager: await run_manager.on_llm_new_token(delta, chunk=chunk) yield chunk def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) prompt = self._convert_messages_to_prompt( messages, ) params: Dict[str, Any] = { "prompt": prompt, **self._default_params, **kwargs, } if stop: params["stop_sequences"] = stop response = self.client.completions.create(**params) completion = response.completion message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await agenerate_from_stream(stream_iter) prompt = self._convert_messages_to_prompt( messages, ) params: Dict[str, Any] = { "prompt": prompt, **self._default_params, **kwargs, } if stop: params["stop_sequences"] = stop response = await self.async_client.completions.create(**params) completion = response.completion message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)])
[docs] def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" if not self.count_tokens: raise NameError("Please ensure the anthropic package is loaded") return self.count_tokens(text)