Source code for langchain_community.chat_message_histories.zep

from __future__ import annotations

import logging
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, Optional

from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    HumanMessage,
    SystemMessage,
)

if TYPE_CHECKING:
    from zep_python import Memory, MemorySearchResult, Message, NotFoundError

logger = logging.getLogger(__name__)


[docs]class SearchScope(str, Enum): """Which documents to search. Messages or Summaries?""" messages = "messages" """Search chat history messages.""" summary = "summary" """Search chat history summaries."""
[docs]class SearchType(str, Enum): """Enumerator of the types of search to perform.""" similarity = "similarity" """Similarity search.""" mmr = "mmr" """Maximal Marginal Relevance reranking of similarity search."""
[docs]class ZepChatMessageHistory(BaseChatMessageHistory): """Chat message history that uses Zep as a backend. Recommended usage:: # Set up Zep Chat History zep_chat_history = ZepChatMessageHistory( session_id=session_id, url=ZEP_API_URL, api_key=<your_api_key>, ) # Use a standard ConversationBufferMemory to encapsulate the Zep chat history memory = ConversationBufferMemory( memory_key="chat_history", chat_memory=zep_chat_history ) Zep provides long-term conversation storage for LLM apps. The server stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs. For server installation instructions and more, see: https://docs.getzep.com/deployment/quickstart/ This class is a thin wrapper around the zep-python package. Additional Zep functionality is exposed via the `zep_summary` and `zep_messages` properties. For more information on the zep-python package, see: https://github.com/getzep/zep-python """
[docs] def __init__( self, session_id: str, url: str = "http://localhost:8000", api_key: Optional[str] = None, ) -> None: try: from zep_python import ZepClient except ImportError: raise ImportError( "Could not import zep-python package. " "Please install it with `pip install zep-python`." ) self.zep_client = ZepClient(base_url=url, api_key=api_key) self.session_id = session_id
@property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve messages from Zep memory""" zep_memory: Optional[Memory] = self._get_memory() if not zep_memory: return [] messages: List[BaseMessage] = [] # Extract summary, if present, and messages if zep_memory.summary: if len(zep_memory.summary.content) > 0: messages.append(SystemMessage(content=zep_memory.summary.content)) if zep_memory.messages: msg: Message for msg in zep_memory.messages: metadata: Dict = { "uuid": msg.uuid, "created_at": msg.created_at, "token_count": msg.token_count, "metadata": msg.metadata, } if msg.role == "ai": messages.append( AIMessage(content=msg.content, additional_kwargs=metadata) ) else: messages.append( HumanMessage(content=msg.content, additional_kwargs=metadata) ) return messages @property def zep_messages(self) -> List[Message]: """Retrieve summary from Zep memory""" zep_memory: Optional[Memory] = self._get_memory() if not zep_memory: return [] return zep_memory.messages @property def zep_summary(self) -> Optional[str]: """Retrieve summary from Zep memory""" zep_memory: Optional[Memory] = self._get_memory() if not zep_memory or not zep_memory.summary: return None return zep_memory.summary.content def _get_memory(self) -> Optional[Memory]: """Retrieve memory from Zep""" from zep_python import NotFoundError try: zep_memory: Memory = self.zep_client.memory.get_memory(self.session_id) except NotFoundError: logger.warning( f"Session {self.session_id} not found in Zep. Returning None" ) return None return zep_memory
[docs] def add_user_message( # type: ignore[override] self, message: str, metadata: Optional[Dict[str, Any]] = None ) -> None: """Convenience method for adding a human message string to the store. Args: message: The string contents of a human message. metadata: Optional metadata to attach to the message. """ self.add_message(HumanMessage(content=message), metadata=metadata)
[docs] def add_ai_message( # type: ignore[override] self, message: str, metadata: Optional[Dict[str, Any]] = None ) -> None: """Convenience method for adding an AI message string to the store. Args: message: The string contents of an AI message. metadata: Optional metadata to attach to the message. """ self.add_message(AIMessage(content=message), metadata=metadata)
[docs] def add_message( self, message: BaseMessage, metadata: Optional[Dict[str, Any]] = None ) -> None: """Append the message to the Zep memory history""" from zep_python import Memory, Message zep_message = Message( content=message.content, role=message.type, metadata=metadata ) zep_memory = Memory(messages=[zep_message]) self.zep_client.memory.add_memory(self.session_id, zep_memory)
[docs] def search( self, query: str, metadata: Optional[Dict] = None, search_scope: SearchScope = SearchScope.messages, search_type: SearchType = SearchType.similarity, mmr_lambda: Optional[float] = None, limit: Optional[int] = None, ) -> List[MemorySearchResult]: """Search Zep memory for messages matching the query""" from zep_python import MemorySearchPayload payload = MemorySearchPayload( text=query, metadata=metadata, search_scope=search_scope, search_type=search_type, mmr_lambda=mmr_lambda, ) return self.zep_client.memory.search_memory( self.session_id, payload, limit=limit )
[docs] def clear(self) -> None: """Clear session memory from Zep. Note that Zep is long-term storage for memory and this is not advised unless you have specific data retention requirements. """ try: self.zep_client.memory.delete_memory(self.session_id) except NotFoundError: logger.warning( f"Session {self.session_id} not found in Zep. Skipping delete." )