Source code for langchain.chains.openai_functions.extraction
from typing import Any, List, Optional
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers.openai_functions import (
JsonKeyOutputFunctionsParser,
PydanticAttrOutputFunctionsParser,
)
from langchain_core.prompts import BasePromptTemplate, ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.openai_functions.utils import (
_convert_schema,
_resolve_schema_references,
get_llm_kwargs,
)
def _get_extraction_function(entity_schema: dict) -> dict:
return {
"name": "information_extraction",
"description": "Extracts the relevant information from the passage.",
"parameters": {
"type": "object",
"properties": {
"info": {"type": "array", "items": _convert_schema(entity_schema)}
},
"required": ["info"],
},
}
_EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned \
in the following passage together with their properties.
Only extract the properties mentioned in the 'information_extraction' function.
If a property is not present and is not required in the function parameters, do not include it in the output.
Passage:
{input}
""" # noqa: E501
[docs]def create_extraction_chain(
schema: dict,
llm: BaseLanguageModel,
prompt: Optional[BasePromptTemplate] = None,
tags: Optional[List[str]] = None,
verbose: bool = False,
) -> Chain:
"""Creates a chain that extracts information from a passage.
Args:
schema: The schema of the entities to extract.
llm: The language model to use.
prompt: The prompt to use for extraction.
verbose: Whether to run in verbose mode. In verbose mode, some intermediate
logs will be printed to the console. Defaults to the global `verbose` value,
accessible via `langchain.globals.get_verbose()`.
Returns:
Chain that can be used to extract information from a passage.
"""
function = _get_extraction_function(schema)
extraction_prompt = prompt or ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
output_parser = JsonKeyOutputFunctionsParser(key_name="info")
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=extraction_prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
tags=tags,
verbose=verbose,
)
return chain
[docs]def create_extraction_chain_pydantic(
pydantic_schema: Any,
llm: BaseLanguageModel,
prompt: Optional[BasePromptTemplate] = None,
verbose: bool = False,
) -> Chain:
"""Creates a chain that extracts information from a passage using pydantic schema.
Args:
pydantic_schema: The pydantic schema of the entities to extract.
llm: The language model to use.
prompt: The prompt to use for extraction.
verbose: Whether to run in verbose mode. In verbose mode, some intermediate
logs will be printed to the console. Defaults to the global `verbose` value,
accessible via `langchain.globals.get_verbose()`
Returns:
Chain that can be used to extract information from a passage.
"""
class PydanticSchema(BaseModel):
info: List[pydantic_schema] # type: ignore
openai_schema = pydantic_schema.schema()
openai_schema = _resolve_schema_references(
openai_schema, openai_schema.get("definitions", {})
)
function = _get_extraction_function(openai_schema)
extraction_prompt = prompt or ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
output_parser = PydanticAttrOutputFunctionsParser(
pydantic_schema=PydanticSchema, attr_name="info"
)
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=extraction_prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
verbose=verbose,
)
return chain